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We present results from three-dimensional hybrid-kinetic simulations of Alfvénic turbulence in a
high-beta, collisionless plasma. The key feature of such turbulence is the interplay between local
wave–wave interactions between the fluctuations in the cascade and the non-local wave–particle
interactions associated with kinetic micro-instabilities driven by anisotropy in the thermal pressure
(namely, firehose, mirror, and ion-cyclotron). We present theoretical estimates for, and calculate
directly from the simulations, the effective collisionality and plasma viscosity in pressure-anisotropic
high-beta turbulence, demonstrating that, for strong Alfvénic turbulence, the effective parallel vis-
cous scale is comparable to the driving scale of the cascade. Most of the cascade energy (80–90%) is
dissipated as ion heating through a combination of Landau damping and anisotropic viscous heating.
The kinetic-energy spectrum of the turbulence has a slope steeper than −5/3 due to the anisotropic
viscous stress. The magnetic-energy spectrum is shallower than −5/3 near the ion-Larmor scale
due to fluctuations produced by the firehose instability. Our results have implications for models of
particle heating in low-luminosity accretion onto supermassive black holes, the effective viscosity of
the intracluster medium, and the interpretation of near-Earth solar-wind observations.

PACS numbers:

I. INTRODUCTION

Many space and astrophysical plasmas are so hot and
dilute that the mean free path between particle–particle
binary interactions is comparable to (or even larger than)
the characteristic scales of the system. Examples of
such weakly collisional plasmas include the intracluster
medium (ICM) of galaxy clusters (characteristic scale
L ∼ 100 kpc, Coulomb-collisional mean free path λmfp ∼
1−10 kpc [1]), low-luminosity accretion flows onto super-
massive black holes (e.g., for the accretion flow around
Sgr A? at the Bondi radius, λmfp ∼ L ∼ 0.1 pc [2]), and
the near-Earth solar wind (λmfp ∼ L ∼ 1 au [3]). All of
these plasmas also have particle Larmor radii ρ many or-
ders of magnitude smaller than macroscopic scales (e.g.,
ρ/L . 10−14 for the ICM, .10−10 for Sgr A?, and .10−6

for the solar wind). Despite this strong magnetization,
the magnetic fields in these systems are typically energet-
ically sub-dominant, with the ratio of thermal pressure p
and magnetic pressure B2/8π, β ≡ 8πp/B2 & 1.

A particularly interesting question in such high-β, low-
collisionality plasmas is how the kinetic physics, which
acts on extremely small (and often unobservable) scales,
influences the global evolution of the system and im-
pacts the interpretation of current and future observa-
tions. The deviations from local thermodynamic equi-
librium allowed by the low collisionality of these plasmas

∗Electronic address: leva@ias.edu

can have a dramatic effect on the transport of energy and
momentum and the evolution of cosmic magnetic fields.
For example, the viscous stress caused by velocity-space
anisotropy in the particle distribution function can pro-
vide an order-unity contribution to the mass-accretion
rate, enhancing or reducing it depending on the shape of
the particle distribution [4–7]. In addition, the electrons
may have a different temperature than the poorly radiat-
ing ions [8, 9], thereby complicating the interpretation of
interferometric images of black-hole accretion flows (such
as those taken by the Event Horizon Telescope [10, 11]).
As a result, in order to understand high-β astrophysical
systems, one must discover how the energy injected in
these systems by large-scale processes gets transferred to
the electron and ion distribution functions, and how these
distributions are shaped by field-particle interactions and
various kinetic instabilities.

In this paper, we explore energy transfer and dissipa-
tion in collisionless high-β turbulence. This problem is
of fundamental importance for the aforementioned as-
trophysical systems because all of them are observed
or thought to host a broadband cascade of turbulent
fluctuations. Most theories of magnetohydrodynamic
(MHD) turbulence assume that the local non-linear tur-
bulent interactions are the main process by which en-
ergy is transferred from large scales to kinetic scales (see
Ref. [12] for a recent review). In collisionless systems, ad-
ditional energy-transfer channels are available, not only
via phase mixing to small scales in velocity space [13]
but also through the action of a number of kinetic micro-
instabilities at ion (firehose [14–17], mirror [18–20], and
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Alfvén ion-cyclotron [AIC, 21]) and electron (firehose,
mirror, and whistler [21]) scales. These instabilities feed
off the free energy associated with field-anisotropic devi-
ations from local thermodynamic equilibrium (e.g., pres-
sure anisotropies). In the absence of collisions (including
any effective collisionality due to wave–particle interac-
tions), such deviations are expected to be largest within
the injection range of the cascade, where the amplitude
of the turbulent motions is largest. The implication is
a non-local transfer of energy from large “fluid” scales
to astrophysically microscopic kinetic scales, instead of
a scale-by-scale cascade that is customarily believed to
occur in more mundane systems [22]. This is not nec-
essarily the case in weakly collisional plasmas, in which
the (effective) collisionality is large enough to efficiently
isotropize the distribution at the injection scale but not
throughout the inertial range. In such plasmas, the pres-
sure anisotropy is driven by the motions between the in-
jection scale and the effective viscous scale, the latter of
which being mediated by the wave–particle interactions
from micro-instabilities. As we show in §II, this effective
viscous scale can be comparable to the injection scale
of the cascade, making the interactions between micro-
instabilities and the cascade crucial for the dynamics even
at macroscopic scales.

The effect of kinetic micro-instabilities on the plasma
has been studied with pressure anisotropies driven ei-
ther externally (with large-scale shear [23, 24] or ex-
pansion [25, 26]) or by individual nonlinear waves
(Alfvén [27], ion-acoustic [28], magnetosonic [29]). Here
we explore, for the first time, and using six-dimensional
hybrid-kinetic numerical simulations, the interaction be-
tween the local cascade of strong turbulence and the non-
local excitation of microscale kinetic instabilities that are
self-consistently produced by the fluctuations in the cas-
cade themselves.

The article is organized as follows. We begin in §II
with a summary of analytical and numerical results
on the properties of waves and turbulence in pressure-
anisotropic, high-β plasmas. We use these results to
obtain analytical estimates for the effective collisional-
ity and effective viscosity in such plasmas. We then test
these results with self-consistent numerical simulations
in §III, which allow us to measure the effective collision-
ality and viscosity and to determine the dominant energy
dissipation mechanisms in collisionless high-β turbulence.
In §IV our results and their range of validity are discussed
and put in the context of observations of turbulence in
the ICM and in the solar wind. We close in §V with a
summary of our results.

II. THEORETICAL EXPECTATIONS

Modern theories of strong plasma turbulence in magne-
tized plasmas (starting with Goldreich and Sridhar [22])
stipulate a dynamical balance between the linear physics
of plasma fluctuations and their nonlinear interactions.

In Alfvénic turbulence, the typical linear timescale for
a given eddy is determined by the time it takes for an
Alfvén wave to cross that eddy. For an eddy whose
extent along the local mean magnetic field B0 is `‖,
this timescale is τlin ∼ `‖/vA0, where vA0 is the asso-
ciated Alfvén speed. The nonlinear timescale, on which
the mutual shearing and advection of the fluctuations
decorrelates the eddy, is estimated as τnl ∼ `⊥/δu⊥ ∼
`⊥/(vA0 δB⊥/B0), where `⊥ is the size of the fluctua-
tion across (“perpendicular” to) B0, and δu⊥ and δB⊥
are the amplitudes of the fluid-velocity and magnetic-
field perturbations. The relationship between linear and
non-linear timescales determines how many non-linear
interactions are required to decorrelate the eddies. If
τnl � τlin, different parts of an eddy decorrelate before
they can be in causal contact via Alfvén-wave propaga-
tion, which leads to a decrease in `‖ and thus τlin [30]. On
the other hand, if τnl � τlin, the turbulence is considered
to be “weak”, and it evolves in a way such that these
timescales become comparable to one another, τnl ∼ τlin
at small scales. This causes the system ultimately to set-
tle into a scale-by-scale “critical balance” between the
linear and nonlinear timescales [22, 31]. The result is a
Kolmogorov [32] spectrum in the direction perpendicular

to the magnetic field, k
−5/3
⊥ , where k⊥ ∼ 1/`⊥ is perpen-

dicular wavenumber, shown schematically in Figure 1a.

The associated scale-dependent anisotropy, `‖ ∝ `
2/3
⊥ ,

was confirmed numerically by Refs. [33] and [34] and sub-
sequently measured in the solar wind using spacecraft
data by Ref. [35] (and many others; see [36] and [37] for
reviews).

In collisionless plasmas, non-linear wave–wave inter-
actions are accompanied by additional linear and non-
linear physics related to wave–particle interactions. For
example, changes in magnetic-field strength caused by
turbulent fluctuations on scales much larger than the
kinetic scales lead to changes in perpendicular pres-
sure through the conservation of particles’ magnetic mo-
ments [38]. The pressure then becomes anisotropic with
respect to the local magnetic-field direction, with the
field-perpendicular component of the pressure, p⊥, differ-
ing from the field-parallel component of the pressure, p‖.
This pressure anisotropy effectively modifies the Alfvén
speed by contributing a field-aligned viscous stress [39–
41], thereby changing the characteristic linear timescale
that features in the “critical balance” [42, 43]. To see
that, consider the equation for the evolution of the fluid
velocity u in the presence of pressure anisotropy,

%
du

dt
= −∇·

(
P +

B2

8π
I− B2

4π
b̂b̂

)
, (1)

where d/dt ≡ ∂/∂t+ u ·∇ is the comoving time deriva-
tive, % is the mass density, P is the pressure tensor, I
is the unit dyadic, and b̂ ≡ B/B is the unit vector in
the direction of the magnetic field B. For a magnetized
plasma in which the characteristic timescales are much
longer than ion-Larmor period 2π/Ωi, the pressure tensor
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FIG. 1: Qualitative picture of how the cascade proceeds in low-β (a) and high-β (b) kinetic turbulence. For β . 1, the
energy flux, injected at some large scale L, remains constant in the inertial range, and is eventually dissipated by ions and
electrons at the corresponding kinetic scales. In contrast, high-β plasma allows for the non-local energy transfer by kinetic
micro-instabilities. The effective viscosity of such a plasma can convert bulk kinetic energy into thermal energy. The goal of
this paper is to examine the effects of this physics on the turbulent cascade and on the distribution of energy between species.

is predominantly diagonal in a coordinate frame defined
by the field direction [38]:

P = p⊥
(
I− b̂b̂

)
+ p‖b̂b̂ = p⊥I−∆p b̂b̂, (2)

the latter equality defining the pressure anisotropy ∆p ≡
p⊥ − p‖. Equation (1) may then be rewritten as

%
du

dt
= −∇

(
B2

8π
+ p⊥

)
−∇·

[(
B2

4π
+ ∆p

)
b̂b̂

]
. (3)

The final term in equation (3) highlights the role of the
pressure anisotropy in modifying the magnetic tension
force compared to MHD, viz.,

B ·∇B

4π
=∇·

[
B2

4π
b̂b̂

]
→∇·

[(
B2

4π
+ ∆p

)
b̂b̂

]
. (4)

As a result of this modification, the effective Alfvén speed
in the plasma,

vA,eff ≡ vA

(
1 +

β

2
∆

)1/2

, (5)

where ∆ ≡ ∆p/p, β ≡ 8πp/B2 and p = (2p⊥+p‖)/3, may
depart significantly from vA when |∆| ∼ 1/β. In par-
ticular, as the firehose instability threshold ∆ = −2/β,
below which vA,eff becomes imaginary, is approached, it
becomes energetically “cheaper” for the fluid motions to
bend the magnetic-field lines [44]. Thus, with β � 1,
even small departures from pressure isotropy can influ-
ence the plasma dynamics in a dramatic way.

What makes this influence particularly complicated
in a turbulent environment is the associated spatio-
temporal inhomogeneity of the pressure anisotropy. Pres-
sure anisotropy is generated by the (approximate) con-
servation of each particle’s adiabatic invariants, µ ≡

mw2
⊥/2B and J ≡

∮
mw‖ · dx, where n is plasma num-

ber density, m is the particle mass, and w⊥,‖ are the ve-
locities of the peculiar (“thermal”) motions of the particle
perpendicular and parallel to the local magnetic field. As
the magnetic-field strength fluctuates, the perpendicular
and parallel energies of the particles therefore fluctuate as
well, resulting in a pressure anisotropy that varies both
in space and time. To describe this evolution, if only
heuristically, we use the Chew et al. [38] equations with
|∆| . 1/β � 1 to write, to the lowest order in ∆,

d∆

dt
≈ 3b̂b̂ :∇u− 3ν∆. (6)

Here we have assumed incompressible motions, included
the isotropizing effect of collisions not present in the orig-
inal equations, and neglected contributions from heat
fluxes. The first term on the right-hand side of equa-
tion (6) captures the adiabatic production of pressure
anisotropy caused by changes in magnetic-field strength
as measured in the fluid frame. Indeed, adopting an ideal
Ohm’s law and assuming incompressibility, Faraday’s law

of induction provides d lnB/dt = b̂b̂ :∇u. In this case,
pressure anisotropy is driven by field-parallel gradients
of field-parallel flows, i.e., the “parallel rate of strain.”
The second term in equation (6) represents the relaxation
of the pressure anisotropy by collisions, a process that
isotropizes the distribution function on a characteristic
timescale ν−1. In collisionless plasmas, such isotropiza-
tion may be provided by the field–particle interactions,
and may depend on the local distribution function and
magnetic-field strength.

Adapting the Goldreich–Sridhar theory to account for
the effective Alfvén speed (5) only works as long as the
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pressure anisotropy is small compared to 1/β. For ex-
ample, an attempt to construct such a theory in the gy-
rokinetic limit was made in Refs. [42, 44]; in this the-
ory, background pressure anisotropy modifies the fluctu-
ations and their nonlinear interactions, while the pressure
anisotropy associated with the fluctuations is too small
to feed back nonlinearly on the fluctuations themselves.
If instead the pressure anisotropy (either background
or fluctuation-driven) exceeds any of the thresholds of
the various kinetic micro-instabilities (at high plasma β,
mostly firehose and mirror), it can cause energy to be
transferred non-locally (see Figure 1b for a schematic pic-
ture of the cascade). The behavior of turbulence in such
a situation is the topic of this paper. In the remainder
of this section, we provide analytical estimates for the
effective collisionality and viscosity of a high-β, kineti-
cally unstable plasma supporting a turbulent cascade of
electromagnetic fluctuations.

We begin by supposing that energy is injected in the
form of bulk motions at an outer scale L and initiates a
turbulent cascade of Alfvénically polarized fluctuations
with amplitudes δu⊥ and δB⊥ ∼ (δu⊥/vA)B0, where
vA is the Alfvén speed associated with the mean mag-
netic field B0. We further assume that these fluctu-
ations satisfy δB⊥/B0 & 1/

√
β above some scale, so

that the pressure anisotropy generated adiabatically by
the fluctuating magnetic-field strength is large enough
to trigger firehose and/or mirror instabilities [27, 45].
In this case, the instabilities grow to wrinkle the mag-
netic field sharply on ion-Larmor scales, ultimately lead-
ing to pitch-angle scattering of ions at an effective colli-
sion frequency νeff that is large enough to limit the fluc-
tuating pressure anisotropy to marginally (un)stable val-

ues, viz., |∆p|/p ∼ |b̂b̂ :∇u|/νeff ∼ 1/β [23, 46]. With

|b̂b̂ :∇u| ∼ ωA(δB⊥/B0)2 for Alfvénic fluctuations that
have a linear frequency ωA, the effective collision fre-
quency νeff then satisfies

νeff ∼ β ωA
δB2
⊥

B2
0

. (7)

For a critically balanced cascade, ωA is always compa-
rable to the inverse of the turnover time at each scale.
Namely, for an Alfvénic fluctuation with parallel extent
`‖ and perpendicular extent `⊥, we have ωA ∼ vA/`‖ ∼
δu⊥/`⊥ ∼ (vA/`⊥)(δB⊥/B0). Equation (7) then be-
comes

νeff ∼ β
vA

`⊥

δB3
⊥

B3
0

. (8)

If the cascade is approximately conservative [96], then we
furthermore have δB3

⊥`
−1
⊥ ∼ const, so that Equation (8)

implies an effective collision frequency independent of `⊥
and large enough to regulate the pressure anisotropies
generated at all scales in the cascade. Evaluating Equa-
tion (8) at the outer scale L, we find that

νeff ∼ β
vA

L

δB3
⊥,L
B3

0

∼ β vA

L
M3

A, (9)

where MA ≡ δuL/vA is the Alfvénic Mach number of the
outer-scale motions.

The collisionality given by (9) implies an effective
(field-parallel) Reynolds number

Re‖eff ≡
δuLL

v2
thi/νeff

∼ M4
A. (10)

From this effective Reynolds number, one can define an

effective viscous scale `ν ≡ LRe
−3/4
‖eff , which is appropri-

ate if the dissipation rate due to the effective viscosity is
proportional to ∇2δu2 [97]. Equation (10) then implies

`ν/L ∼ M−3
A . (11)

The viscous scale given by Equation (11) is equivalent
to the Alfvén scale on which the turbulent velocity is
approximately Alfvénic. As a result, for strong Alfvénic
turbulence, the collisionless viscous scale due to kinetic
micro-instabilities is comparable to the outer scale of the
turbulence. This conclusion does not depend on the
plasma β or on the exact instability that regulates the
pressure anisotropy (so long as its threshold is propor-
tional to 1/β and it is saturated via an enhancement of
the plasma’s collisionality).

One of the caveats of the above derivation is that
we assume asymptotic scalings for the cascade, which
are valid only for scales much smaller than the driv-
ing scale and much larger than the dissipation scale.
However, our results suggest that the dissipation scale
(∼`ν) is comparable to the forcing scale (∼L) when
MA ∼ 1. An alternative derivation of the viscous scale
could be obtained by assuming k‖δu‖ ∼ k⊥δu⊥, which
is equivalent to incompressibility for MA ∼ 1 fluctua-

tions. With this assumption, |b̂b̂ :∇u|k ∼ k⊥δu⊥ in-
creases with k⊥ for a Goldreich–Sridhar-like cascade un-
til it reaches its maximum value of (`ν/L)2/3MAvA/L at
k⊥`ν ∼ 1. This different scaling of the parallel rate of
strain leads to the same value of the effective Reynolds
number, Re‖eff ∼ M4

A, implying that our results hold
for non-asymptotic fluctuations. Note that our assump-
tions about the cascade are expected to hold only for
MA . 1. For MA � 1, dynamo is expected to in-
crease the magnetic-field strength until the Mach num-
ber decreases sufficiently [47, 48]. In the opposite limit
of MA � 1, it is possible that the cascade is in the

weak-turbulence regime, which has δuk ∝ k
−1/2
⊥ and

k‖ ∝ const(k⊥) [49, 50]. Assuming such a cascade with

L‖ ∼ L, gives Re‖,eff ∼ M3
A and `ν/L ∼ M

−9/4
A .

Yet another caveat to these scaling arguments is that
the pressure-anisotropy stress can back-react on the mo-

tions to reduce b̂b̂ :∇u below the simple Alfvénic esti-
mate used in equation (7) (an effect termed magneto-
immutability by Ref. [51]). This would reduce the drive
of pressure anisotropy, and thus νeff would in turn de-
crease compared to the above estimates. However, this
effect seems unlikely to be important if `ν is comparable
to the scale of an external forcing, because then the dom-
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inant contribution to ∆p will be from the forcing motions
rather than from somewhere in the inertial range.

To determine the importance of the effective collision-
ality in astrophysical systems, we use equation (9) to
compute the effective ion mean free path,

λ‖mfp,eff ∼
vthi

νeff
∼ M−2

A

vthiL

βδuL
∼ L M−3

A√
β
. (12)

In weakly collisional high-β systems like the ICM, this
effective mean free path could be smaller than the mean
free path due to Coulomb collisions (λCoulomb) even if
the latter is smaller than the system size. For example,
using physical parameters relevant to the Coma cluster
of galaxies [52–54],

λ‖mfp,eff

λCoulomb
≈ LM−3

A /
√
β

3
√

2
4
√
π

T 2
i

niΛie4

(13)

≈ 0.05

(
δuL

200 km s−1

)−3(
L

100 kpc

)(
B

2 µG

)4

×
(

ne

10−3 cm−3

)−1(
Te

108 K

)−5/2

,

where Λi is ion Coulomb logarithm, and the tempera-
tures Ti,e and densities ni,e of ions and electrons are as-
sumed to be equal. This simple estimate predicts more
than an order-of-magnitude suppression in the effective
viscosity of the ICM, consistent with the observationally
based conclusion by Refs. [54, 55]. Note that the sce-
nario sketched out above for the effective mean free path
is very sensitive to the magnetic-field strength (∝B4) and
can change easily by an order of magnitude given current
measurement uncertainties.

III. NUMERICAL EXPERIMENTS

A. Method of solution

Astrophysical high-β plasmas typically have extremely
large scale separations that are not computationally fea-
sible to capture in numerical simulations. Because of our
focus on the interplay between inertial-range turbulence
and ion-scale kinetic instabilities, we adopt a hybrid-
kinetic model, in which the ions are treated as kinetic
while the electrons are assumed to be fluid-like. Such an
approximation ignores the potential effects of electron-
scale micro-instabilities on the cascade. We argue in §IV
that these instabilities are likely to be less important than
ion-scale ones (particularly in the weakly collisional ICM,
in which the electron pressure anisotropy is expected to
be too small to produce instabilities), but this should be
verified with fully kinetic simulations in the future.

1. Model equations

The hybrid-kinetic approach that we employ assumes
the plasma to be non-relativistic with all relevant scales
much larger than the Debye length. Plasma on these
scales is quasi-neutral, so ne = Zini, where Zi ≡ qi/e.
The displacement current in Ampère’s law is negligible,
hence

neue = Ziniui −
c

4πe
∇×B. (14)

The electric field in hybrid kinetics is obtained from the
equation of motion for the electron fluid,

mene
due

dt
= −∇·Pe − ene

(
E +

ue×B

c

)
, (15)

after neglecting electron inertia (the left-hand side) and
specifying the form of the electron pressure tensor Pe.
For simplicity, we assume the electrons to be isothermal
and isotropic, Pe = neTeI with Te = Ti0 = const. As a
result, the electric field in our model is given by

E = −ui×B

c
+

(∇×B)×B

4πeniZi
− Te∇ni

eni
, (16)

where the first term is the (MHD) motional electric field,
the second is associated with the Hall effect, and the third
represents the thermoelectric effect. The magnetic field
evolves according to the induction equation,

1

c

∂B

∂t
= −∇×E, (17)

and satisfies ∇·B = 0. Note that the final term in (16)
does not contribute to Faraday’s law (17), as it may be
written as a full derivative ∝ lnni and is thus electro-
static.

The ion distribution function f(t,x,v) evolves accord-
ing to the collisionless Vlasov equation

∂f

∂t
+ v · ∂f

∂x

+

[
Zie

mi

(
E +

v×B

c

)
+

F

mi

]
· ∂f
∂v

= 0, (18)

where F is an external force that we use to drive turbu-
lence at the largest scales of the simulation box (specified
in §III A 3). The number density ni(t,x) and flow veloc-
ity ui(t,x) of ions are then obtained by taking the zeroth
and first moments of f .

2. Pegasus++

Equations (16)–(18) are solved using a new hybrid-
kinetic code, Pegasus++ (Arzamasskiy et al., in prep.),
which is based on the algorithms of its predecessor Pe-
gasus [56] and on the infrastructure of the popular mag-
netohydrodynamic code Athena++ [57]. Pegasus++ is
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much better optimized to take advantage of modern su-
percomputing architectures than Pegasus, thereby mak-
ing the simulations reported in this paper possible.

Pegasus++ solves equation (18) using a particle-in-
cell approach, in which the distribution function is rep-
resented with a finite number of macro-particles. These
macro-particles’ positions and velocities evolve along the
characteristics of equation (18), with electric and mag-
netic fields interpolated from the computational grid to
the particle positions using a second-order (triangular)
shape function. The latter ensures that, in the limit
of infinite resolution, the moments of the ion distri-
bution function and their derivatives are continuous in
space. Pegasus++ solves equations (17) and (18) with
the electric field given by equation (16) using a predictor-
predictor-corrector method that is second-order accurate
in both time and space. The code employs a staggered
grid to preserve ∇·B = 0.

3. Simulation parameters

The ion macro-particles in our simulations are initial-
ized to have a Maxwell–Boltzmann distribution with spa-
tially uniform density ni(t = 0,x) = ni0 and temperature
Ti0. The electron temperature is constant, Te = Ti0, and
Zi = 1. The initial magnetic (“guide”) field is uniform
B(t = 0,x) = B0ẑ.

Bulk flows in the ion species are driven on large scales
by an external force F , which is oriented perpendicu-
lar to the guide field (F ⊥ ẑ) and constructed to be
solenoidal (∇·F = 0). The force is correlated in time
using an Ornstein–Uhlenbeck process with a correlation
time equal to the Alfvén crossing time, tcorr = (kf

‖vA0)−1,

associated with the smallest parallel wavenumber of the
forcing kf

‖. This forcing results in fluctuations that are

primarily Alfvénically polarized, a feature that makes
our simulations relevant to many space and astrophys-
ical plasmas. For example, observations of turbulence in
the solar wind find that most of the power is in fluctu-
ations that are Alfvénically polarized [58–60]. Outside
of the solar wind, Hitomi observations of the ICM [61]
show that the turbulent motions in the Perseus cluster
of galaxies have δu ∼ 160 km/s, consistent with sub-
sonic turbulence and an Alfvénic Mach number MA & 1,
given typical values of the plasma β ∼ 100 implied by
Faraday rotation measurements of the intracluster mag-
netic field in several clusters [53, 62–65]. Similarly, the
turbulence in black-hole accretion flows is expected to be
composed of incompressible fluctuations, as indicated by
local shearing-box simulations of the magnetorotational
instability [5, 66, 67] (although a recent study shows a
comparable amount of slow-mode fluctuations [68]).

We performed multiple simulations of driven turbu-
lence in high-β, collisionless plasmas. All simulations em-
ploy an elongated computational domain spanning a size
of Lx×Ly×Lz ≈ (120.5ρi0)2×241ρi0 with 3842×768 grid
cells and 1000 macro-particles per cell. These dimensions

imply perpendicular wavenumbers k⊥ that span both an
inertial range, with k⊥,minρi0 ≈ 0.05, and a kinetic (sub-
Larmor) range, with k⊥,maxρi0 = 10. The majority of
the results presented in this paper (the exception be-
ing Figures 11 and 12) are drawn from two simulations
that have βi0 = 4 and 16, but identical energy injection
rates per volume εdr = ni0(Lx/Lz)

2v2
A0/2tcorr. The lat-

ter is expected to drive critically balanced fluctuations
at the outer scale of the box with amplitudes δuL/vA0 ∼
Lx/Lz = 0.5; the actual strength of the fluctuations is
time-dependent and can be different from this value, de-
pending on the response of the plasma to the driving (the
values measured in our runs are MA ≈ 0.35 for βi0 = 16
and MA ≈ 0.48 for βi0 = 4). In these two simulations,
the forcing excites fluctuations with k⊥ ∈ [1, 2]k⊥,min

and k‖ ∈ [1, 2]k‖,min. We have also tested driving with
k⊥ = k⊥,min and k‖ = k‖,min in an additional run, which
produced more coherent large-scale modes than did the
other forcing scheme (see Figure 11). We have also re-
produced our results qualitatively and quantitatively us-
ing smaller runs with δuL/vA0 ∼ Lx/Lz = Ly/Lz = 1.0.
Each simulation was run for several Alfvén crossing times
tcross ≡ L‖/vA0 to achieve quasi-steady state (these simu-
lations are never in a true steady state because of contin-
ued energy injection from driving and, consequently, con-
tinued heating of the underlying ion distribution). For
our βi0 = 16 simulations, tcross ≈ 964Ω−1

i0 ; for βi0 = 4

ones, tcross ≈ 482Ω−1
i0 .

B. Evolution of high-β turbulence

In this Section, we summarize the evolution of turbu-
lent fluctuations in our simulations of high-β turbulence.
This evolution is illustrated with three-dimensional snap-
shots of the magnetic field in Figure 2 and is separated
into several stages: the excitation of mirror and AIC
instabilities at early times, when the external driving
dominates; an intermediate steady state dominated by
Landau damping; and a quasi-steady state characterized
by the co-existence of a turbulent cascade and micro-
fluctuations associated with the firehose instability.

1. Excitation of mirror and ion-cyclotron instabilities

In our simulations of high-β turbulence, large-scale
fluctuations in the bulk ion velocity are driven by the ex-
ternal forcing. These motions cause the volume-averaged
magnetic-field strength to increase, which produces pos-
itive temperature anisotropy, ∆T ≡ T⊥ − T‖ > 0,
through adiabatic invariance. Figure 3 shows the evo-
lution of the box-averaged parallel (red line) and perpen-
dicular (blue line) temperatures during the simulation
at βi0 = 16. The box-averaged temperature anisotropy,
∆T = δT⊥ − δT‖, where δT⊥,‖ ≡ T⊥,‖ − Ti0, is shown
with the purple line. Very early in the simulation, the
box-averaged temperature anisotropy, ∆T/T ‖, reaches
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FIG. 2: The time evolution of the magnetic field strength along the guide field (δBz ≈ δB‖, upper row), and perpendicular

to the guide field (
√
δB2

x + δB2
y ≈ δB⊥, lower row). We show three snapshots: t ≈ 0.4tcross, when we see the first mirror

fluctuations (see also Figure 17 in Appendix A and further discussion there); t ≈ 0.6tcross, when we detect AIC fluctuations
(see also Figure 18); and in the quasi-steady state (t ≈ 6.7tcross), when we can instead identify firehose fluctuations (see also
Figure 6).

the 1/β‖ threshold for the mirror instability. Some parts
of the box also cross the threshold for rapid growth of
the AIC instability, which we take to be 0.5/

√
β‖ fol-

lowing Refs. [21, 69]. (The AIC instability is techni-
cally threshold-less, but its growth rate decreases ex-
ponentially for pressure anisotropies below ≈0.5/

√
β‖;

see Refs. [26, 70, 71] for additional details on the AIC
instability’s thresholds.) As a result, mirror and AIC
fluctuations appear at small scales. These fluctuations
can be seen in the three-dimensional snapshot of δB‖
in Figure 2 (left column), and in more detail in Fig-
ure 17 in Appendix A, where we also present a detailed
structure-function analysis of mirror and AIC modes. Ul-
timately (after ≈2–3 Alfvén-crossing times), the temper-
ature anisotropy falls below the mirror threshold and
positive-pressure-anisotropy instabilities are no longer
driven, meaning that the mirror and AIC stages are just
transient in our simulations. In the quasi-steady state,
only a small portion of the simulation box is above the
mirror threshold, and mirror fluctuations are not obvi-
ously present (see Figure 5 for more detail).

2. Landau-damping stage

After this initial transient, the simulation reaches an
intermediate quasi-steady state. Its key characteristic is
growth of the parallel temperature of the plasma. As
we show in Figure 3, at the start of the βi0 = 16 sim-
ulation (before t ≈ 0.3tcross), the temperatures evolve
adiabatically: conservation of particles’ adiabatic invari-

ants implies T⊥ ∝ B and T‖ ∝ B−2, and thus the
temperature anisotropy is driven towards positive values
as B increases. Once ∆T/T‖ reaches the 1/β‖ thresh-
old of the mirror instability, Larmor-scale magnetic mir-
rors are produced, which limit further growth of pressure
anisotropy by trapping particles in the deepening troughs
of the mirrors where the total magnetic-field strength is
approximately constant [23, 46, 72].

Further evolution of the system is influenced by two
processes. Pitch-angle scattering off the AIC fluctuations
and the edges of strong mirror fluctuations reduces the
average magnetic moments of particles (Figure 3b). At
the same time, the parallel temperature steadily grows
during this period. Part of this growth can be attributed
to pitch-angle scattering, occurring at a rate that can
be estimated from the evolution of the average magnetic
moment (Figure 3b). From Ωi0t = 2000 to 3500 (or from
∼2 to ∼3.5 tcross), it changes by δµ/µthi0 ∼ 0.035, corre-
sponding to δT⊥/Ti0 ∼ 0.035. Assuming that this change
is due to pitch-angle scattering, δT‖/Ti0 ∼ 2δT⊥/Ti0 ∼
0.07, which is only enough to explain ∼25% of the paral-
lel heating during the same time period. We interpret the
remaining energization as caused by the Landau damp-
ing of Alfvénic fluctuations. This interpretation is also
supported by the spectrum of magnetic energy (EB) be-
ing much steeper than −5/3 (see Figure 4), in agreement
with gyrokinetic results [73]. In contrast, in kinetic sim-
ulations of β . 1 turbulence [74, 75], a spectrum with
a slope of −5/3 develops within ∼1–2 Alfvén crossing
times. Additional evidence for Landau damping can be
found in the evolution of the ion distribution function,
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FIG. 3: (a) Time-evolution of box-averaged perpendicular
and parallel temperatures of the plasma (δT⊥,‖ ≡ T⊥,‖−Ti0),

and box-averaged temperature anisotropy ∆T = δT⊥ − δT ‖
in βi0 = 16 simulation. Different stages of the simulation are
marked with vertical lines. See text for more details about in-
dividual stages: §III B 1 and Appendix A for mirror and AIC
stage, §III B 2 for Landau-damping stage, §III B 3 for quasi-
steady-state firehose stage. (b) Evolution of box-averaged
magnetic moment of particles (δµ ≡ µ − µthi0). During the
mirror, AIC, and Landau-damping stages, the average mag-
netic moment decreases due to scattering off mirror and AIC
fluctuations. In the quasi-steady state, it slowly increases, be-
cause of ion heating and coupling of perpendicular and paral-
lel temperatures due to scattering of ions off firehose fluctua-
tions.

which shows flattening near the Alfvén speed (see Fig-
ure 15) and from analysis of the field-particle correlation
function (not included in the paper), which exhibits reso-
nant features near vA, consistent with expectations from
Landau damping [76]. Details of this diagnostic can be
found in Refs. [74, 75].

This Landau-damping phase continues until the pres-
sure anisotropy becomes negative, the firehose instabil-
ity is triggered, and the simulated turbulence reaches
a quasi-steady state. A very rough estimate for the
time required for Landau damping to drive the pres-
sure anisotropy beyond the firehose threshold may be
obtained by supposing that the entire cascade rate were
dissipated as parallel energization. In this case, the par-
allel temperature would grow large enough to produce

0.1 1 10
k⊥ρi0
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10−3
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10−1

∝ k−5/3
⊥

EB Ωi0t = 600
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Ωi0t = 3000

Ωi0t = 6000

FIG. 4: Time-evolution of the magnetic-energy spectra in the
βi0 = 16 simulation. In the initial phase of the simulation (red
line, §III B 1), mirror instability is triggered, and the spectrum
has a bump at kinetic scales. In the Landau-damping stage
(green and orange lines, §III B 2), the spectrum is steeper than

k
−5/3
⊥ due to dissipation of turbulence. In the quasi-steady

state (blue line, §III B 3), firehose fluctuations are produced,

and the spectrum becomes slightly shallower than k
−5/3
⊥ .

a firehose-unstable pressure anisotropy within a time
t/tcross ∼ M−2

A . For our simulations having MA ≈ 0.5,
this time is ∼4tcross.

3. Quasi-steady state

Once the combination of pitch-angle scattering and
Landau damping drives the pressure anisotropy beyond
the firehose threshold, magnetic-field fluctuations grow
on ion-Larmor scales at the expense of the anisotropy
in the distribution function. A quasi-steady state re-
sults in which the magnetic spectrum acquires power at
small scales that locally flattens it to be shallower than

k
−5/3
⊥ and the box-averaged pressure anisotropy is close

to zero but slightly negative (see Figures 3 and 4, re-
spectively). Figure 5 provides further information on the
pressure anisotropy in the quasi-steady state by show-
ing its distribution versus β‖ (so-called “Brazil” plots,
extensively used in the solar-wind community [77, 78]).
The accompanying dashed lines indicate the thresholds
of the mirror instability (1/β‖) and of the fluid firehose
instability (−2/β‖), beyond which the Alfvén speed be-
comes imaginary. The dot-dashed line at positive pres-
sure anisotropy represents the threshold of the AIC in-
stability (≈0.5/

√
β‖), which is active in the beginning of

the run. At negative pressure anisotropy, the dot-dashed
line shows the approximate threshold (≈−1.4/β‖) of the
kinetic firehose instability [43, 79]. Unlike in the mirror
and AIC snapshots (Figures 17 and 18 of Appendix A),
the pressure anisotropy is bound between the mirror and
firehose instability thresholds, hugging the latter more
closely. The average pressure anisotropy is negative, and
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FIG. 5: A probability density function of pressure anisotropy
and parallel plasma beta for simulations with βi0 = 4 and
βi0 = 16. Histograms are normalized so that the integral over
β‖ and p⊥/p‖ − 1 equals 1. Black dots indicate the positions
of these simulations at the start of each run. Dashed and dot-
dashed lines represent the threshold of various kinetic micro-
instabilities (see text for more detail). Despite being initially
driven towards positive values, the quasi-steady-state pressure
anisotropy is negative, and is close to the −1.4/β‖ threshold
of kinetic firehose instability (dot-dashed line).

its absolute value is smaller than 1/β.
This distribution of pressure anisotropy in the quasi-

steady state is very different from what has been found
in comparable Braginskii-MHD simulations of Alfvénic
guide-field turbulence [51] and of magnetorotational tur-
bulence [7], in which almost all of the simulated plasma
sits up against either the mirror or the firehose thresh-
old. The difference comes from the treatment of pres-
sure anisotropy in Braginskii MHD: such simulations re-
quire some assumption on how pressure anisotropy be-
haves at the instability thresholds, and the most com-
mon assumption is to reduce the pressure anisotropy in-
stantaneously to marginally stable values once it exceeds
the thresholds. In contrast, kinetic simulations do not
make such an assumption. Once the instabilities are trig-
gered, they self-consistently produce Larmor-scale mir-
ror and firehose fluctuations, which regulate the pres-
sure anisotropy. These fluctuations decay rather slowly
[28, 46], and continue to scatter particles even when the
pressure anisotropy returns below the instability thresh-
olds. As a result, ∆p is reduced much more efficiently
than in Braginskii MHD, and its quasi-steady-state val-
ues are smaller.

Figure 6 shows slices of the magnetic-field strength,
plasma fluid velocity, and pressure anisotropy normalized
to magnetic pressure, 8π∆p/B2, all in the quasi-steady
state of the βi0 = 16 simulation. Mirror fluctuations,
manifest at the beginning of the run (Figure 17), are no
longer visible. This is likely due to their decay and shear-
ing by the fluctuations associated with the turbulent cas-
cade. One can still see some quasi-parallel fluctuations
in regions with positive pressure anisotropy (e.g., near
z ≈ 25ρi0, y ≈ 75ρi0 and z ≈ 130ρi0, y ≈ 10ρi0), which

we attribute to AIC instability. Additionally, one can no-
tice small-scale oblique modes of large amplitude (such as
those at y ≈ 75ρi0 and z ≈ 200ρi0), which are correlated
with regions of negative pressure anisotropy. Studies of
localized firehose instability [23] show that this instabil-
ity produces similar oblique modes, and so we interpret
those fluctuations as firehose modes produced continually
in the quasi-steady state.

In the quasi-steady state, the box-averaged magnetic
moment of the particles slowly increases with time (Fig-
ure 3b). The reason for this is that the perpendicular
and parallel components of the temperature are coupled
to one another via pressure-anisotropy regulation by the
firehose instability (although many different instabilities
are present in our simulations, the firehose is much more
efficient at scattering particles than mirror [23], so the
temperatures are well coupled only after firehose is trig-
gered). As a result, as turbulence is dissipated into par-
ticle heat, those components increase together, which
causes slow growth of the average magnetic moment. The
changes of the magnetic moments of some individual par-
ticles are much more rapid, as we discuss in §III E.

C. Energy transfer in high-β turbulence

The results described in the previous subsections sug-
gest that collisionless high-β turbulence contains a su-
perposition of local interactions (a Kolmogorov-like cas-
cade from large to small scales) and non-local processes
mediated by kinetic micro-instabilities (mirror and AIC
during the driving stage, and firehose in the quasi-steady
state). In this Section, we explore the relative impor-
tance of different energy-transfer channels. To do that,
we calculate various “transfer functions” that diagnose
quantitatively the scale-to-scale transfer of energy in the
turbulence caused by different bulk forces [80, 81]. A
detailed derivation of these diagnostics is given in Ap-
pendix B. In brief, the equations for the bulk kinetic,
thermal, and magnetic energies are written in a form
that makes explicit the transfer of energy between dif-
ferent “reservoirs” of energy and different wavenumbers.
These reservoirs are defined as vector fields a with as-
sociated energy a2/2. For the bulk kinetic energy, the
corresponding vector field is au ≡ √%u; for the magnetic

energy it is aB ≡ B/
√

4π. For the thermal energy, mul-
tiple definitions are possible. In this paper, we choose

a∆p ≡
√
|∆p|b̂, so that the viscous stress in the momen-

tum equation may be written as a∆pa∆p, similar to the
Maxwell stress. Only the part of the thermal energy asso-
ciated with ∆ (“anisotropic thermal energy”) is included
in our definition of a∆p; the remaining part of thermal en-
ergy, “isotropic thermal energy,” is equal to 3p⊥/2. Our
definition of a∆p is also consistent with the expression
for the free energy in the “kinetic reduced MHD” limit
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FIG. 6: Snapshots of the magnetic-field-strength fluctuations (a,b), fluctuations of the flow velocity (c,d), and of pressure
anisotropy normalized to the magnetic pressure (e,f), all taken in the quasi-steady state of βi0 = 16 simulation. There is
much more small-scale structure in the magnetic field relative to the flow velocity, which indicates that the effective magnetic
Prandtl number is large. Mirror and AIC fluctuations are not apparent, unlike in the earlier stages of the same simulation
(Figures 17 and 18). Instead, there are small-scale oblique modes in the regions with large negative pressure anisotropy (e.g.,
near z ≈ 25ρi0, y ≈ 75ρi0 and z ≈ 130ρi0, y ≈ 10ρi0). We associate these fluctuations with the firehose instability.

(i.e., the long-wavelength limit of gyrokinetics) [44],

W∆
KRMHD =

B2
0

8π

∫
β‖,i

∆i

2

δB2
⊥

B2
0

d3x

=
B2

0

8π

∫
ϑ∆p

(δa∆p)2

2
d3x, (19)

where ϑ∆p ≡ sign(∆p), δb̂ = δB⊥/B0 � 1, and the
pressure anisotropy is assumed to have an absolute value
much larger than its fluctuation due to δB [viz., ∆i =

∆i + O(|δb̂|2), which allows us to neglect terms propor-

tional to δ∆2
i and δ∆iδB⊥ and write δa∆p =

√
|∆p|δb̂].

The definition of a∆p contains the absolute value of the
pressure anisotropy. Such a choice was made from a
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FIG. 7: Energy transfer functions (20)–(22) due to the Reynolds (left), Maxwell (middle), and viscous stresses (right) in the
quasi-steady state of our βi0 = 16 simulation. There is a considerable amount of non-local energy transfer due to the firehose
instability, which is not present during the early stages of the simulation (see Appendix B for an analogous plot featuring the
earlier stages).

purely technical standpoint, in order to avoid imaginary
values when computing this vector at each point of the
simulation domain. This choice also forces us to include
the sign of ∆p in various expressions, such as in equa-
tion (19), which can make results hard to interpret if
ϑ∆p changes significantly throughout the domain. For-
tunately, as we show in Figure 5, most of the domain
has negative pressure anisotropy, and the volume frac-
tion with positive ∆p is small.

Given the definitions of the energy “reservoirs,” some
terms in the equation for the bulk kinetic energy can be
written in the form of shell-to-shell transfer functions.
The most important transfer functions in that equation
are the transfer function due to the Reynolds stress,

T R
q⊥→k⊥ ≡ −

∫
〈au〉k⊥ ·u ·∇〈au〉q⊥ d3x, (20)

the transfer function due to the Maxwell stress,

T M
q⊥→k⊥ ≡

∫
〈au〉k⊥ ·

B√
4π%
·∇〈aB〉q⊥ d3x, (21)

and the transfer function due to the anisotropic viscous
stress,

T V
q⊥→k⊥ ≡

∫
〈au〉k⊥ ·ϑ∆p

√
|∆p|
%

b̂ ·∇〈a∆p〉q⊥ d3x.

(22)
Each of these transfer functions represents the rate of en-
ergy transfer between fluctuations whose wavenumbers
lie within the logarithmic perpendicular-wavenumber
shells centered on q⊥ and k⊥ (from kinetic to kinetic
in the case of T R, from kinetic to magnetic for T M, and
from kinetic to anisotropic thermal energy for T V).

Figure 7 shows the flow of kinetic energy through
Fourier space as calculated by the transfer functions
(20)–(22) in the two-dimensional plane of wavenumbers
q⊥ and k⊥ in quasi-steady state of βi0 = 16 simulation at
Ωi0t = 6000. Results from the same diagnostic obtained
during earlier stages of this simulation can be found in
Appendix B, Figure 19. The sign of the transfer terms
in Figure 7 represents the change in bulk kinetic energy
in shell k⊥. In the early stages of the simulation, includ-
ing the mirror/AIC and the Landau-damping stages, the
transfers are mostly local, and are similar to those found
previously in simulations of MHD turbulence [81]. In
contrast, in the quasi-steady state, there is considerable
non-local energy transfer associated with the Maxwell
and viscous stresses (see the q⊥ > k⊥ part of Figure 7b,c).
This non-local transfer takes energy from the large-scale
fluid motions and transfers it into small-scale magnetic
fields, as is expected from the firehose instability. We
thus conclude that kinetic micro-instabilities are active
even in the quasi-steady state and that they contribute
a non-negligible amount of energy transfer. Out of the
three instabilities that we see in our simulations, the one
most responsible for the non-local energy transfer ap-
pears to be the firehose, as this non-local transfer be-
comes competitive with the local transfers only after the
box-averaged pressure anisotropy approaches the firehose
threshold and localized patches of the plasma exceed that
threshold. The viscous stress in the quasi-steady state
has both local and non-local components, which we dis-
cuss in more detail in §III F, and is mostly negative, in-
dicating that the viscous stress mostly removes energy
from the bulk motions. This transfer causes the con-
version of energy between bulk kinetic and anisotropic
thermal energies, and subsequently steepens the kinetic-
energy spectrum (as we show in §III D).
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FIG. 8: (a,b) Spectra of parallel (orange) pressure and perpendicular (purple) pressures, and of pressure anisotropy (green).

We define the effective viscous scale `ν,eff as the scale at which the pressure anisotropy fluctuation amplitude ∼k1/2
⊥ ∆pk peaks.

This scale is close to the driving scale, in line with the analytical prediction of §II. (c,d) Spectral indices as a function of
wavenumber for the spectra from upper panels.

The energy transfer quantified by the transfer func-
tions (20)–(22) is, in principle, reversible. Indeed, for
any energy transfer term of the form a1 ·f ·∇a2 for
some vector field f , there is another term of the form
a2 ·f ·∇a1 (see Appendix B for the transfer terms in
the induction equation and in the equation for ∆p). The
total energy transfer due to such terms,

∑

k⊥,q⊥

T a1→a2q⊥→k⊥ + T a2→a1q⊥→k⊥ (23)

=

∫
(a1 ·f ·∇a2 + a2 ·f ·∇a1) d3x

=

∫
f ·∇ (a1 ·a2) d3x = −

∫
(a1 ·a2)∇·f d3x,

is zero if ∇·f is zero, which is one of the assumption we
are making in our transfer-function analysis. We check
this assumption a posteriori in Appendix B by computing
“compressive” terms and comparing them to “advection-
like” terms such as (20)–(22). Although equation (23) is
valid for arbitrary f , this vector in practice is propor-
tional to u or B. We refer the reader to Appendix B,
and Figure 19 in particular, for more information. One
of the terms, which we do not consider explicitly, is the
transfer of energy due to an effective collisionality [i.e.,
the last term in equation (6)]. This term is quite im-
portant in the quasi-steady state, as it is responsible for
the conversion of energy between the anisotropic (∆p/2)
and isotropic (3p⊥/2) thermal energies: it reduces the
pressure anisotropy and leads to irreversible heating. It

is not feasible to compute this term directly in our sim-
ulations because, unlike the last term of equation (6),
the effective collisionality in our runs comes from wave–
particle interactions and its analysis requires computa-
tion of high-order moments of the distribution function.
The only other irreversible term is resistive dissipation,
which we find to be relatively less important.

D. Effective viscous scale and sub-viscous
turbulence

In §II we argued that, in critically balanced turbu-
lence, the effective viscous scale associated with scat-
tering by ion-Larmor-scale kinetic instabilities satisfies
`ν ∼ LM−3

A . This means that, for our simulations with
MA . 1, the viscous scale is expected to be close to, or,
formally speaking, even above, the driving scale. For-
mally, we shall define the viscous scale as the scale at
which the pressure anisotropy peaks. We obtain this scale
in a way analogous to the regular energy-containing scale
of the turbulence: if the velocity field has a spectrum of
Eu(k⊥), then the energy-containing scale corresponds to
the peak of δu2

k ∼ k⊥Eu(k⊥). For the viscosity, this
means that the effective viscous scale `ν,eff corresponds
to the value of k⊥ at which the spectrum of pressure
anisotropy E∆p has a slope of −1. It is possible to define
the effective viscous scale in other ways, e.g., by looking
at the k-space peak of viscous dissipation. We do not use
such a definition because of the non-local nature of the
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FIG. 9: (a,b) Quasi-steady-state spectra of magnetic (blue) and kinetic (red) energies in the βi0 = 16 (a) and βi0 = 4 (b)
simulations. These spectra have similar slopes near the driving scale, but deviate from one another at scales below the effective
viscous scale (defined in §III D and in the caption of Figure 8, and indicated by the dotted lines). The kinetic-energy spectra
are steeper than −5/3 because of the anisotropic viscous stress; the slope of the kinetic-energy spectrum becomes close to −2.
The magnetic-energy spectrum becomes shallower towards k⊥ρi0 ∼ 1 because firehose fluctuations are injected at these scales
in the quasi-steady state. (c,d) Spectral indices as functions of wavenumber for the magnetic- and kinetic-energy spectra. (e,f)
Parallel wavenumber (k‖) of the fluctuations as a function of their perpendicular wavenumber (k⊥) obtained from magnetic-field
structure-function analysis. The value of spectral anisotropy, k‖/k⊥, agrees with critical-balance predictions.

viscous dissipation (§III C).

Figure 8 shows the spectra of the parallel and perpen-
dicular pressures, as well as of the pressure anisotropy, in
the quasi-steady state of the βi0 = 16 and βi0 = 4 sim-
ulations. The effective viscous scale for each simulation
is indicated by a vertical dashed line: at k⊥ρi0 ≈ 0.126
for βi0 = 16 and at k⊥ρi0 ≈ 0.144 for βi0 = 4. These
scales are close to the outer scale of the turbulence, con-
sistent with the expectations presented in §II. An in-
teresting feature seen in Figure 8 is that the parallel-
pressure spectrum is much larger in magnitude than the
perpendicular-pressure spectrum. This difference may
be explained as follows. Perpendicular pressure bal-
ance implies p⊥ + B2/8π ≈ const, and therefore δp⊥ ∼
−δB2/8π. At the same time, pressure anisotropy at sub-

viscous scales (where the effective collisionality is less
important [98]) behaves nearly adiabatically: d∆p/dt ∼
p d ln |B|/dt. This leads to pressure-anisotropy fluctu-
ation of δ∆p ∼ β δB2 � δB2 ∼ δp⊥, and therefore
δp‖ � δp⊥. In the sub-viscous range, δp‖ is passively
advected, its spectrum has a similar slope to δuk, and
the parallel pressure remains larger than the perpendic-
ular pressure throughout the sub-viscous range. Landau
damping, viscous heating, and pitch-angle scattering off
micro-fluctuations produced by kinetic micro-instabilities
gives rise to large-scale fluctuations of δp‖ to achieve a

value of pressure anisotropy close to ν−1
eff b̂b̂ :∇u.

To examine how the effective viscosity affects the cas-
cade, we plot in Figure 9 the quasi-steady-state spec-
tra of magnetic energy (blue) and kinetic energy (red)
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from both simulations. The magnetic-energy spectra
have larger amplitudes than the kinetic-energy spectra at
the driving scales due to changes in the effective Alfvén
speed caused by the mean negative pressure anisotropy in
the box (cf. Figure 5). These spectra have similar slopes
above the viscous scale. The kinetic-energy spectrum is
steeper than −5/3 (close to −2), which is an indication
of the viscous dissipation. Below the viscous scale, the
kinetic-energy spectrum continues to steepen because of
the sub-viscous ion heating (see §III F for more detail on
ion heating). In contrast, the magnetic-energy spectrum
becomes shallower. We attribute this flattening to small-
scale energy injection by kinetic micro-instabilities [99].
Given that the majority of the simulation box is near the
threshold for the firehose instability (see Figure 5), we
interpret this bump in the magnetic-energy spectrum as
the spectrum of the firehose fluctuations.

The deviation of the magnetic spectrum from the ki-
netic spectrum at sub-parallel-viscous scales indicates an
important feature of high-β turbulence: the small-scale
firehose fluctuations are decoupled from the Alfvénic cas-
cade. To illustrate this point, we plot in panels (e) and
(f) of Figure 9 the wavenumber anisotropy k‖(k⊥) for
δu and δB fluctuations. This dependence is computed
using the values of the quasi-steady-state structure func-
tions at ` = `⊥ and ` = `‖. The wavenumber anisotropy

appears to have a scaling of k‖ ∝ k
1/2
⊥ in the inertial

range, consistent with critical balance:

k‖vA ∼ k⊥δu⊥ ∝ k3/2
⊥ E1/2

u ∝ k1/2
⊥ , (24)

where in the final step we have adopted a k−2
⊥ spectrum.

The anisotropy computed using the magnetic-field fluc-
tuations has the same scaling, despite the magnetic en-
ergy having a shallower spectrum. This means that the
firehose modes, which are oblique and affect neither the
parallel nor the perpendicular structure functions, do not
participate in the critically balanced cascade. The mag-
netic spectrum is a superposition of the critically bal-
anced cascade with a slope close to −2 and an addi-
tional spectrum of the firehose fluctuations, which peaks
at kinetic scales. Independence of the firehose fluctua-
tions from the Alfvénic cascade has also been shown by
Ref. [43] using an expanding box, in which the dominant
contribution to the pressure anisotropy is from plasma
expansion perpendicular to the mean field (rather than
from the fluctuations).

E. Effective collisionality

In this Section, we estimate the effective collisionality
from the results of our hybrid-kinetic simulations. For
that, we use two independent methods: one based on
the evolution of the pressure stress in the simulations
(§III E 1) and one based on the motion of individual par-
ticles (§III E 2).

1. Effective collisionality from pressure-stress evolution

In §II, we showed that pressure anisotropy, in the ab-
sence of heat fluxes, evolves according to equation (6).
Its magnitude grows with the local parallel rate of strain

S ≡ b̂b̂ :∇u, and is relaxed by collisions at the rate ν.
A common assumption in reduced fluid models, such as
Braginskii MHD, is that the typical frequency of fluc-
tuations satisfies ω � ν, so d∆/dt is much smaller
than other terms in (6). Then ∆ ' S/ν. To test
whether such a closure works in kinetic high-β turbu-
lence, we plot in Figure 10a the spectra of ∆p (blue) and

pb̂b̂ :∇u (red). The spectrum of pressure anisotropy is
multiplied by a coefficient 〈νeff〉 ∼ 0.01Ωi0, which is the

value of (pb̂b̂ :∇u)k/∆pk averaged over scales satisfying
k⊥`ν,eff < 1. In what follows, we refer to the latter [which

we also label as (pb̂b̂ :∇u)L/∆pL] as the “Braginskii es-
timate,” because the pressure anisotropy in a weakly col-
lisional plasma when the fluid motions are incompressible

is given by Braginskii [41] as ∆p = pb̂b̂ :∇u/ν. Shaded
regions indicate root-mean-square fluctuations in pres-
sure anisotropy and rate of strain measured during the
quasi-steady state. The pressure-anisotropy spectrum
follows the rate of strain down to the viscous scale, be-
low which the pressure anisotropy starts to decrease while
the parallel rate of strain increases. This increase corre-
sponds to the injection of small-scale firehose fluctuations
in quasi-steady state.

Despite their being comparable in magnitude,

pb̂b̂ :∇u and νeff∆p are not directly proportional to one
another, as in the standard Braginskii closure. Instead,
there is a phase difference between the two, a feature that
may be explained as follows. If the local rate of strain
behaves as S(t) = S0 exp(−iωt), and ∆(t = 0) = 0, then
equation (6) has the simple solution

∆(t) =
3S0

−iω + 3ν
e−iωt =

S(t)√
ν2 + ω2/9

eiφ, (25)

where cosφ = ν/
√
ν2 + ω2/9 and φ is the phase lag be-

tween the pressure anisotropy and the rate of strain. To
estimate this phase lag in our simulations, we compute a
scale-dependent effective collision frequency

ν̃k ≡
(pb̂b̂ :∇u)k

∆pk
(26)

for each Fourier mode, evaluate its real part, so

cosφk ≡ <(ν̃k)/|ν̃k|, (27)

and k-shell average the result. In Figure 10b, we compare
this quantity with an estimate from equation (25) using
ω = k‖vA0 with k‖(k⊥) obtained from Figure 9 (for sim-
plicity, we have neglected the difference between vA0 and
vA,eff , which is justified given the relatively small mean
pressure anisotropy displayed in Figure 5). Unlike in Fig-
ure 10a, we average over shells at fixed k rather than k⊥
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FIG. 10: (a) Comparison between the spectra of pressure anisotropy (blue) and pb̂b̂ :∇u (red), the latter of which is proportional
to the rate of growth of the magnetic field [see equation (6)]. Above the effective viscous scale `ν,eff (vertical dotted line), the

pressure anisotropy is proportional to pb̂b̂ :∇u. The proportionality coefficient between the two (the “Braginskii estimate” for
the effective collision frequency) is 〈νeff〉 ∼ 0.01Ωi0. At scales smaller than `ν,eff , this effective collisionality is not large enough
relative to the dynamical frequencies, so the pressure anisotropy deviates significantly from the Braginskii estimate. Note
the bump in b̂b̂ :∇u near k⊥ρi0 ∼ 1, which corresponds to firehose fluctuations in quasi-steady state (the additional peak at
k⊥ρi0 ≈ 3 is due to particle noise). (b) Wave-number dependence of the phase shift (blue) between the pressure anisotropy and

pb̂b̂ :∇u. Analytical expectations with ν = 〈νeff〉 (purple) and ν = 〈νeff〉/5 (red) are shown for comparison [see equation (25)].
Shaded regions indicate root-mean-square fluctuation in plotted quantities during the quasi-steady state. Panel (a) shows the

dependence on k⊥, while in panel (b) all quantities are plotted versus k =
√
k2
‖ + k2

⊥.

(i.e., spherical shells instead of cylindrical) in order to
avoid counting harmonics with k‖ � k⊥, which have very
small amplitudes but contribute noticeably to the noise
in the phase φk. The value ν = 〈νeff〉, despite working
well for the amplitude of pressure anisotropy, is not con-
sistent with the phase lag. Instead, a smaller value of
ν ≈ 〈νeff〉/5 in equation (25) provides a better fit. One
possible explanation of this difference comes from heat-
flux-related terms, which we neglected in writing equa-
tion (6). In the remainder of the paper, we use 〈νeff〉
(and not 〈νeff〉/5) when discussing Braginskii collisional-
ity. Another effect neglected in the Braginskii model is
the growth of small-scale magnetic fields associated with
kinetic micro-instabilities (mostly firehose). Kinetic in-
stabilities increase the ion-Larmor-scale contribution to
the shear b̂b̂ :∇u, and decrease ν̃k. Structure-function
analysis of the rates of strain (not shown) suggests that

b̂b̂ :∇u peaks at k‖ρi0 ≈ k⊥ρi0 ≈ 0.4, which corresponds
to the wavenumber of fastest growth for the oblique fire-
hose instability [23].

2. Effective collisionality from particle motion

Figure 10a provides just one way of estimating the ef-
fective collisionality of an (otherwise collisionless) high-β
plasma. This method relies on the assumption that pres-
sure anisotropy evolves according to equation (6), which
is not necessarily true if strong heat fluxes are present.
To provide an independent measurement of the effective

collisionality, we examine to what extent the magnetic
moments µ of the particles are conserved. In the ab-
sence of scattering, the only way to change µ is through
non-adiabatic heating or cooling. Although there has
not yet been a self-consistent study of heating in col-
lisionless high-β plasmas, existing studies suggest that
non-adiabatic heating is small; e.g., stochastic heating
is suppressed at β � 1 [75, 82]. Additionally, in the
absence of pressure anisotropy, Landau damping can dis-
sipate a significant portion of the cascade [73], leaving
little energy for additional non-adiabatic channels.

An example of this process is shown in Figure 11.
The black lines in panels (a)–(d) show the trajectory of
a particle from the βi0 = 16 simulation (see §III A 3)
in the planes perpendicular and parallel to the guide
field, plotted over a snapshot of fluctuations in magnetic-
field strength (a,b) and in pressure anisotropy (c,d).
The fluctuations themselves evolve over time, while pan-
els (a)–(d) only show them at a fixed moment; this
should not present a problem of interpretation given that,
at high plasma β, the fluctuations evolve much more
slowly than the particles stream across them (k‖vA �
k‖vth). This particular particle has been chosen because
it moves through a region with firehose-unstable pres-
sure anisotropy, and the magnetic-field slices exhibit clear
firehose fluctuations. These fluctuations cause the parti-
cle’s magnetic moment to break by pitch-angle scattering
(panel e), during which the total energy of the particle is
almost constant (panel f).

One way of measuring collisionality from particle tra-
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FIG. 11: Trajectory of a tracked particle from the βi0 = 16 simulation with single-mode driving (see §III A 3). This particle
moves through a region with firehose-unstable pressure anisotropy (panels c,d). The same region shows small-scale oblique
magnetic-field fluctuations (panels a,b), which we interpret as firehose modes. As the particle passes through the region, its
magnetic moment starts to break (panel e), and it experiences pitch-angle scattering at almost constant total energy (panel f).
The gray shaded regions in panels (e) and (f) indicate the period of time over which the trajectory in panels (a)–(d) is plotted.
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FIG. 12: Histograms of collision times of tracked particles in the βi0 = 16 (a) and βi0 = 4 (c) simulations. Solid lines denote the
probabilities obtained with the collisionality diagnostic described in §III E, which uses all particles in the simulation (§III E 2).

(b,d) Comparison of effective collisionalities obtained by computing ∆pk and (pb̂b̂ :∇u)k at large scales (k⊥`ν,eff < 1, see
Figure 10) and those obtained from 〈τcoll〉 based on the distributions in panels (a) and (c). A good agreement between these
independent methods indicates that the collisionality is similar to the Braginskii estimate (28). Vertical dashed and dot-dashed
lines in panel (b) show the values of time for the snapshots in Figures 17 and 18.

jectories is to look at the particles’ magnetic moments as
functions of time, and compute a histogram of times τcoll

needed for the magnetic moment of each tracked parti-
cle to change by one factor of e. In Figure 12(a,c), we
show such a histogram, computed using the trajectories
of >104 tracked particles from our βi0 = 16 and βi0 = 4
simulations. Solid lines in this figure show the distribu-
tion functions of τcoll, but evaluated during the simula-
tion time using all available particles (>1011 particles in
total) [100]. These solid lines are then used to evaluate
〈τcoll〉 at different times during the simulations. The ef-
fective collisionality is then obtained as νeff = 1/〈τcoll〉
[101]. Panels (b) and (d) in Figure 12 compare the effec-
tive collisionalities computed in this manner with those
computed from the ratio of rate of strain and pressure
anisotropy at large scales L & `ν,eff (§III E 1).

In the beginning of each simulation, the collisionality
is smaller than the Braginskii estimate, which is to be ex-
pected because the simulation is not yet in quasi-steady
state. After the micro-instabilities are triggered (vertical
dashed and dot-dashed lines in Figure 12b), the collision-
ality grows rapidly, and its value in quasi-steady state is
consistent with the Braginskii estimate. The values of
collisionality are also consistent with our expectations

from §II. Namely, for βi0 = 16,

νeff ∼ βi0b̂b̂ :∇u|max ∼ βi0M3
A

vA0

L⊥
≈ 0.01Ωi0. (28)

Although the collisionality is expected to scale propor-
tionally to

√
βi0 [based on equation (28) with L⊥ ∝ ρi0],

we found a larger value of collisionality in the βi0 = 4
simulation than in the βi0 = 16 simulation. We attribute
this to differences between Mach numbers and the quasi-
steady-state pressure anisotropies in the simulations (the
βi0 = 4 simulation ends up closer to the firehose thresh-
old, see Figure 5). If positive pressure anisotropies are
mediated by the AIC instability with threshold ∝1/

√
β,

then νeff =
√
βi0b̂b̂ :∇u|max, and thus both runs should

have the same collisionality. However, our simulations
are continuously driven, and after a long enough time,
the firehose instability is triggered, which increases the

collisionality to βi0b̂b̂ :∇u|max.

F. Ion heating

In §II, we presented theoretical arguments, subse-
quently supported by our numerical results presented
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tant. Sub-viscous heating is suppressed in the quasi-steady
state, and most of the heating occurs close to the effective
viscous scale.

in §§III D and III E, that suggested that the viscous
scale in collisionless high-β turbulence was close to the
outer scale. Here we ask whether this means that most
of the heating happens at the effective viscous scale,
rather than at kinetic scales. Heating close to kinetic
scales has been found numerically in low-β kinetic tur-
bulence [74, 75, 83], and also in gyro-kinetic simulations
of high-β turbulence [73]. In the latter, it came from the
Landau damping of Alfvén waves, expected to peak at a
scale [42, 73, 84]

ρ? ≡ (3/4π1/4
√

2)β
1/4
i ρi. (29)

Both low-β simulations and gyrokinetic studies lack dy-
namically important viscous stresses, which can cause
a significant portion of the cascade to be dissipated at
the viscous scale. The precise amount of such dissipa-
tion might be difficult to estimate given the dynamical
back-reaction of the parallel viscous stress, which tends
to re-arrange fields so as to reduce the amount of parallel
viscous heating [7, 51]. In this Section, we ask whether
most of the heating happens at small scales due to Landau
damping or at large scales due to the pressure-anisotropic
viscous stress, and show that the latter is the case in our
simulations.

We first note that the velocity spectrum in Figure 9 has
a slope steeper than −5/3, instead closer to −2. There
are two potential explanations: either the non-linear in-
teractions of turbulent eddies are modified in such a way
as to steepen the spectrum, or the large-scale ion heat-
ing causes dissipation of a considerable portion of the
cascade energy flux. As we explained in §III D, for the
former explanation to be valid, the conservative critically
balanced cascade should satisfy k‖δu2

k ∼ const, which for

a k−2
⊥ spectrum means that k‖ ∝ k⊥. As we showed in

Figure 6(e,f), this is not the case, as k‖ scales as k
1/2
⊥ in

the quasi-steady state. This means that the cascade is
not conservative, and some part of the cascade is dissi-
pated as ion heating. Our energy transfer function for
the viscous stress (Figure 7) also suggests considerable
dissipation in the inertial range.

To determine the wavenumber dependence of the ion
heating Qi, we employ the energy-transfer functions
for the thermal-energy equation (see §III C and Ap-
pendix B), and separate the total heating into its lo-
cal (q⊥ = k⊥) and non-local (q⊥ 6= k⊥) components
averaged over the quasi-steady state. These averages
are computed from two-dimensional transfer functions
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by summing over q⊥-shells, Tnon-loc ≡
∑
q⊥ 6=k⊥ Tq⊥→k⊥

and Tloc ≡ Tk⊥→k⊥ . Such a definition can, in principle,
depend upon the choice of wavenumber shells; for sim-
plicity, we ignore this dependence, while noting that the
local and non-local contributions to the transfer functions
seen in Figure 7 are quite distinct. Figure 13 shows the
dependence of local and non-local ion heating Π :∇u on
time (a) and on perpendicular wavenumber (b) for the
βi0 = 16 simulation. The simulation starts with most of
Π :∇u being local. This is the reversible energy trans-
fer between bulk-kinetic and thermal energies; indeed, it
changes sign several times during this stage of the sim-
ulation. After sufficiently negative pressure anisotropy
has built up, so that the simulation becomes unstable to
the firehose instability, the non-local ion heating becomes
the dominant component of the energy transfer. During
this stage, non-local heating approximately follows the
non-local energy transfer between kinetic and magnetic
energies due to firehose instability. In the quasi-steady
state, there are comparable amounts of local and non-
local heating, while the effective collisionality makes the
transfer of energy due to anisotropic viscosity, Π :∇u,
irreversible. The quasi-steady-state value of T M

non-loc is
comparable to, or even larger than, the total heating,
which indicates that non-local transfer due to firehose
growth is comparable to the overall energy flux in the
system and that the firehose instability is important in
the quasi-steady state. We interpret all non-local trans-
fer due to magnetic tension (T M

non-loc) as firehose growth
(see §III C).

The steep spectrum of dQi/dk⊥ implies that most of
the energy is dissipated at large scales, close to the effec-
tive viscous scale (and hence outer scale) of the system.
Such dissipation is not present in low-β simulations of
collisionless Alfvénic turbulence [74, 75], in which heat-
ing typically peaks at sub-ion scales. That being said,
there is some dissipation at small scales as well: the
spectrum of dQi/dk⊥ continues even after the cutoff of
the kinetic-energy spectrum. There are several heating
mechanisms that can operate in this range. Cyclotron
heating, which can be important at β ∼ 1 [74], is ex-
pected to have a localized peak at the wavenumber at
which the frequency of kinetic Alfvén waves ωKAW ∼ Ωi;
this behavior is inconsistent with the results in Figure 13
(assuming Alfvénic nature of sub-ρi fluctuations, which
is not exactly true if firehose instability is present). Sim-
ilarly, stochastic heating [75, 82, 85] is expected to have
a localized peak at k⊥ρi0 ∼ 1. Both of these mechanisms
are expected to be relatively unimportant at β � 1. It
is likely that the sub-viscous dissipation in our high-β
simulations is caused instead by Landau damping, which
is the dominant energization mechanism seen in gyroki-
netic simulations at high β [73]. That being said, the
importance of Landau damping changes as the simula-
tion progresses. Figure 14 shows the wavenumber de-
pendence of ion energization during three time intervals:
the mirror and AIC stages, Ωi0t ≤ 2000; the Landau-
damping stage, 2000 < Ωi0t ≤ 4000; and the quasi-steady

state, Ωi0t > 4000. The first two intervals have consid-
erable heating near k⊥ρ? ∼ 1 [recall the definition of ρ?
given by equation (29)]. In contrast, Larmor-scale heat-
ing is considerably suppressed in the final stage [102].
This indicates that Landau damping is suppressed, and
most of the heating in the quasi-steady state is due to the
pressure-anisotropic viscous stress.

G. Ion distribution function

Finally, we examine the effects of ion heating and par-
ticle scattering on the distribution function. Figure 15
shows the ion distribution functions at the end of the
βi0 = 4 and βi0 = 16 runs. Both runs produce distribu-
tion functions close to a bi-Maxwellian distribution with
T‖ > T⊥. The core of the parallel distribution function is
flattened, which we attribute to Landau damping (mostly
active in the early stages of the simulations) and to the
non-linear phase of the firehose instability [103].

Although the final distribution functions are not
isotropic, the tails of those distributions are, as we show
in Figure 15(e–h). This implies that pitch-angle scatter-
ing due to kinetic instabilities affects different parts of the
distribution function differently, and causes the wings of
the distribution function to be much more collisional, and
therefore isotropic, than the cores. Similar features had
been seen in the distribution functions of prior β ∼ 1 sim-
ulations [74], in which pitch-angle scattering was present
without instabilities, and in simulations of magnetized
turbulence in an expanding box [43], in which anoma-
lous scattering was associated with firehose fluctuations.
Understanding such distribution functions requires care-
ful examination of the particle-energy dependence of the
effective collisionality, which falls beyond the scope of
this paper.

IV. DISCUSSION

A. Simulation dynamics and effective viscosity

In this paper, we explored the evolution of turbu-
lent fluctuations in a collisionless, high-β plasma. The
initially driven fluctuations become unstable to mirror
and, later, to AIC instabilities. These instabilities result
in ion-Larmor-scale perturbations of the magnetic field,
which cause ions to scatter with a characteristic scat-
tering frequency ∼Sβ, where S ≡ b̂b̂ :∇u is the growth
rate of the magnetic-field strength. This scattering limits
the (otherwise adiabatically driven) pressure anisotropy.
The average value of the pressure anisotropy ultimately
becomes negative (i.e., p‖ > p⊥), thereby triggering the
firehose instability. The pressure anisotropy then fluctu-
ates across the box and has a broadband spectrum that
peaks at the viscous scale, which, for the effective colli-
sionality ν ∼ Sβ and Alfvénic Mach number MA ∼ 1, is
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always comparable to the driving scale. The root-mean-
square value of pressure anisotropy is consistent with the

Braginskii value of ν−1b̂b̂ :∇u with ν measured directly
from the particles, although there is a phase lag between
it and the parallel rate of strain, which makes the dy-
namical impact of pressure anisotropy somewhat differ-
ent than found in Braginskii-MHD [51]. The parallel vis-
cous stress associated with the instability-regulated pres-
sure anisotropy leads to irreversible dissipation, which
peaks at a scale `ν,eff that is close to the outer scale of
the turbulence, and steepens the kinetic-energy spectrum
below that scale to a spectral slope close to −2.

B. Ion energization

At high values of β, the viscous heating, to which we
attribute the steepening of the kinetic-energy spectrum,
dissipates the majority of the cascade energy flux. This
heating mechanism should persist, no matter the scale
separation in the system, as long as the outer-scale fluctu-
ations are above the Alfvén-wave interruption limit (i.e.,
as long as their amplitudes are such that the pressure
anisotropy that they adiabatically produce ventures be-
yond the β-dependent kinetic-instability thresholds). In
addition to large-scale viscous heating, there is consider-
able heating at sub-viscous scales, especially during the
early stages of the simulations. We attribute this heat-
ing, which peaks at k⊥ρi ∼ β−1/4 [see equation (29)],
to Landau damping, the dominant mechanism in gyro-
kinetic simulations [73]. The ion-to-electron heating ratio
is ∼5–10 in all our simulations (electron heating is mea-
sured via the hyper-resistive dissipation at k⊥ρi0 � 1).
There is also considerable non-local energy transfer from
driving scales to kinetic scales due to the firehose insta-
bility (comparable to overall energy flux; see Figure 13).

For studies of high-β turbulence in fully collision-
less plasmas, there is an important physical ingredi-
ent missing from our simulations: realistic electron
physics. Imagine a turbulent plasma composed of col-
lisionless ions and electrons. The large-scale fluctuations
make the distribution functions of both ions and elec-
trons anisotropic, and at sufficiently large β unstable
to pressure-anisotropy-driven instabilities. If the quasi-
steady-state anisotropy of both species is Braginskii-like,

with ∆p/p ∼ ν−1b̂b̂ :∇u – as it is for ions in our simu-
lations – the ion-to-electron heating ratio should be

Qi

Qe
∼ pi/νi

pe/νe
. (30)

Therefore, the partition of energy is determined by the
effective collisionality of the species. If the collisionality
of both species is ν ∼ Sβ, then p/ν ∝ β/ν = const is in-
dependent of both β and the species. It is therefore pos-
sible that ions and electron receive the same amounts of
energy, which contradicts, e.g., the models used in the in-
terpretation of EHT images of black-hole accretion flows
in M87 and around Sgr A? [86, 87].This estimate depends

on the exact thresholds of the instabilities that regulate
the particle velocity distributions. For example, Sharma
et al. [88] argue that, for AIC and electron-whistler in-
stabilities, Qi/Qe ∼ 10, consistent with some theories of
radiatively inefficient black-hole accretion flows.

Additionally, in the presence of cooling, the electron
temperature can decrease due to radiation. This would
lead to a decrease in Te, and thus βe. If βe decreases
to a point where the plasma is stable to electron micro-
instabilities, this can lead to a state with Qi/Qe � 1 and
thus Ti/Te � 1. The resulting large temperature ratios
may persist, as there are no known collisionless mecha-
nisms for efficient electron-ion thermal coupling [89].

One particularly important application of the results
of this section is to the interpretation of EHT images of
black-hole accretion flows. This interpretation involves
carrying out general-relativistic magnetohydrodynamic
simulations with some prescription for the heating rate
of the electrons [86, 87], which is typically informed from
gyrokinetic calculations [73, 90]. In Figure 16, we dis-
play a summary plot of the ion-to-electron heating ratio
obtained from our hybrid-kinetic simulations done with
Pegasus++ as a function of plasma β. The low-β val-
ues are taken from our earlier work on ion energization
in strong Alfvénic turbulence [74, 75], while the high-β
points represent the results of this paper. Averaged over
the final 3.5tcross, about 83% of the total cascaded energy
is absorbed by ions in the βi0 = 16 simulation, and about
82% at βi0 = 4. The remaining energy flux cascades fur-
ther until it is removed by hyper-resistivity near the grid
scale. We estimate the electron heating in hybrid kinet-
ics as this hyper-resistive dissipation, εη. We also plot
(dashed line) the predicted Qi/Qe from a series of simula-
tions with gyrokinetic ions and fluid electrons [73]. Note
that gyrokinetics assumes δB/B � 1, while the fluctu-
ations in our simulations have finite amplitudes. Our
results differ significantly from these hybrid-gyrokinetic
predictions, which indicates the importance of including
non-adiabatic processes that are ordered out of gyroki-
netics.

Finally, it is important to understand the caveats re-
lated to using Figure 16a for black-hole accretion models.
Other than missing electron physics, an important limi-
tation of our work is limited scale separation between the
energy-injection scale and the dissipation scale of the cas-
cade. For the low-β runs [74, 75], the effective scale sep-
aration is ∼104 (the separation between ρi and the scale
at which δu/vA ∼ 1). Such a scale separation is realistic
for the solar wind, but not for accretion flows, where it is
expected to be ∼1010. Dissipation mechanisms used to
explain the low-β results (stochastic and cyclotron heat-
ing) are expected to diminish with scale separation, so
it is unclear whether the conclusions from Ref. [74, 75]
will hold at scale separations relevant to black-hole ac-
cretion. That being said, astrophysical turbulence can be
imbalanced (e.g., the solar-wind turbulence is measured
to be imbalanced [91]). Recent work on imbalanced cas-
cades [83, 92] concluded that the imbalanced portion of
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FIG. 16: (a) The ratio of ion to electron energization, Qi/Qe, as a function of plasma β from several hybrid-kinetic simulations
(βi0 = 1/9 simulation from [75]; βi0 = 1 and 0.3 simulations from [74]; and βi0 = 16 and 4 simulations from this paper).
Ion heating is measured directly from the evolution of the thermal energy of the particles. Electron heating is inferred from
hyper-resistive dissipation near the grid scale. For comparison, the dashed line shows the results from the hybrid-gyrokinetic
simulations of Ref. [73]. (b) Time dependence of ion heating (Qi) and hyper-resistive dissipation (εη) in the high-β hybrid-kinetic
simulations. All lines are normalized to the total energy dissipation ε̇ averaged over the final 3.5tcross of each simulation.

the energy flux could not cascade beyond the ion-Larmor
scale and was eventually dissipated through AIC heating.
Such dissipation is expected to be controlled solely by the
degree of imbalance and not by the scale separation in
the cascade.

For high-β turbulence, the results of this paper (§III F)
indicate that the majority of dissipation happens at the
outer scale of the cascade. Therefore, ion heating may
depend on the properties of the forcing, and may re-
quire a better understanding of realistic turbulence in-
jection (e.g., through kinetic magnetorotational instabil-
ity [5, 67, 68]). The results from high-β hybrid-kinetic
simulations are likely to depend upon the amplitude of
the forcing and on the scale separation (e.g., through
their impact on spectral anisotropy at ion-Larmor scale).
To test the latter, we have conducted a test for the ampli-
tude dependence by running a βi0 = 16 simulation with
δuL/vA ∼ 1, having a lower ion-scale spectral anisotropy
than other runs used in this work. In this simulation,
a slightly larger fraction of the cascade rate, ∼90%, is
dissipated on ions.

C. Dependence on scale separation

Given the limited size of our simulations, it is impor-
tant to understand whether our results are expected to
hold at scale separations relevant to astrophysical sys-
tems. One important (although transient) feature of our
runs is Landau damping, which eventually pushes the
pressure anisotropy over the firehose-instability thresh-
old by raising the parallel temperature. If the effective

collisionality from the instabilities is strong enough to
interfere with the maintenance of the Landau resonance
(namely, νeff � k‖vthi), then the Landau damping can be

shut off. From our estimates in §II, νeff ∼ βM3
AvA/L, and

thus at k‖ρ? ∼ 1, where Landau damping is expected to

become important, k‖vthi/νeff ∼ (L/ρi)/(β
3/4
i M3

A) � 1,
the inequality following from the typically enormous as-
trophysical scale separation between L and ρi. Therefore,
Landau damping is expected to be important (arguably
more important than in our simulations) and the plasma
will approach the firehose-instability threshold in approx-
imately one large-scale dynamical time (assuming that
the entire cascade with MA ∼ 1 is dissipated as parallel
heating; our simulations approach it in ∼4tcross given the
smaller fluctuation amplitude of MA ∼ 0.5).

In order to estimate the amplitude of firehose fluc-
tuations at the Larmor scale, we can leverage some re-
sults from recent Pegasus++ expanding-box simulations

[43, 79], which have shown for Ωi/S & 30β
3/2
i that the ki-

netic firehose threshold is≈−1.4/βi and that the instabil-
ity saturates at an amplitude (δB⊥/B)2

FH ∼ (S/Ωi)
1/2 ∼

M
3/2
A (ρi/L)1/2β

−1/4
i for S ∼ M3

AvA/L. For comparison,
the amplitude of fluctuations in an Alfvénic cascade with
the Goldreich–Sridhar spectrum evaluated at k⊥ρi ∼ 1 is
(δB⊥/B)2

AW ∼ M2
A(ρi/L)2/3 � (δB⊥/B)2

FH for MA ∼ 1

and ρi/L � β
−3/2
i . For a k−2

⊥ spectrum, (δB⊥/B)2
AW is

even smaller at the ion-Larmor scale. We therefore con-
clude that in astrophysical systems, as found in our simu-
lations, ion-Larmor-scale magnetic-field fluctuations are
expected to be composed mostly of firehose modes rather
than of Alfvénic fluctuations. Therefore, ion-Larmor-
scale fluctuations in our simulations are similar to those
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expected in astrophysical systems.

D. Observational implications

Unfortunately, outside of the solar wind, observations
of turbulence in high-β systems are limited. And the
solar-wind observations are in a slightly different regime
than our simulations: the solar wind starts as a low-β
plasma, which expands and reaches the high-β regime. In
this situation, which we studied in Ref. [43], the expan-
sion is also an important source of pressure anisotropy.
Nevertheless, the solar wind shows a pressure anisotropy
with an average value close to zero, and with a spread
consistent with the 1/β instability thresholds (although
the collisional age at ∼1 au, being comparable to outer-
scale dynamical timescales, is short enough to mat-
ter [78]). Our simulations show very similar behavior
(see Figure 5), with a spread in the pressure anisotropy
comparable to 1/β and an average value that is negative
but smaller than the firehose threshold.

Outside the solar wind, the most promising system in
which high-β turbulence can be studied is the ICM, which
has β ∼ 100. There have been several attempts to mea-
sure plasma-velocity fluctuations in the ICM. The X-ray
observations presented in Ref. [54] use Bremsstrahlung
emission from the hot intracluster plasma to determine
the density fluctuations, from which the velocity fluc-
tuations are then inferred. Their energy spectrum is
consistent with the Kolmogorov prediction and extends
to scales considerably smaller than the viscous scale
expected from Coulomb collisions alone. This implies
that the effective collisionality of the ICM is apprecia-
bly enhanced. One explanation for this enhancement
is scattering from kinetic micro-instabilities, which can
be triggered for turbulence with Alfvénic Mach numbers
MA & 1/β � 1. Our simulations show that, although the
effective viscous scale is large, the spectrum in this case is
closer to Kolmogorov than ∇2u dissipation would imply
(it steepens to approximately k−2

⊥ instead of exhibiting
an exponential decrease; current observations [54] can-
not distinguish between −5/3 and −2 spectral slopes).
Ref. [55] used optical emission from cold gas in the ICM
to measure the spectrum of plasma velocity. Their obser-
vations show a slightly steeper spectrum than −5/3; for
some clusters, it is close to −2. Our simulations predict
similar spectra: the effective viscosity does not produce
an exponential cutoff in the spectrum, but rather steep-
ens it slightly. Optical measurements are much more pre-
cise than those taken in the X-ray, but their connection
to turbulence in the bulk ICM is unclear (optical mea-
surements are dominated by the interiors of cluster cores,
which are expected to be much more collisional than ICM
outskirts). Future observations are required to determine
better the relationship between our simulations and the
ICM turbulence.

Of course, even though we have a testable prediction
for the slope of the sub-viscous spectra, the scale sepa-

ration used in our simulations is much smaller than in
actual astrophysical systems; our simulations have only
∼1 decade in scale between `ν,eff and ρi, which is much
smaller than the ∼12 decades in the ICM. Relatively
small scale separation leads to firehose fluctuations be-
ing produced relatively close to `ν,eff , which may impact
the spectral slopes and the comparison between the rate
of strain and the pressure anisotropy. However, we are
encouraged that our numerical results agree well with
the analytical estimates presented in §II, which we ex-
pect to hold for any scale separation. Given the steep
scaling of the computational cost of kinetic simulations
with scale separation (as the fourth power), future ef-
forts should concentrate on the development of realistic
sub-grid models for kinetic physics in high-β plasmas.

V. SUMMARY

We have presented analytical estimates of effective col-
lisionality and viscosity in collisionless high-β turbulence
and tested those estimates by performing first-principles
hybrid-kinetic simulations. We explored the interplay be-
tween local non-linear turbulent cascades and kinetic in-
stabilities, which tap the free energy of large-scale devi-
ations from local thermodynamic equilibrium (e.g., pres-
sure anisotropies) to produce small-scale magnetic-field
fluctuations. Our results can be summarized as follows.

• Large-scale fluctuations (continuously driven by a
random, incompressible force in our simulations)
generate pressure anisotropy through approximate
adiabatic invariance and ultimately excite rapidly
growing kinetic instabilities, thereby transferring
energy non-locally to small (ion-Larmor) scales.

• At the beginning of the simulations, the main ki-
netic instabilities are mirror and AIC, because the
magnetic-field strength in our box is mostly increas-
ing, which drives positive pressure anisotropy.

• Turbulence reaches an intermediate steady state, in
which the cascade energy is dissipated primarily by
Landau damping, causing parallel heating.

• The parallel heating pushes the system towards the
firehose instability threshold.

• In the quasi-steady state reached eventually, the
turbulence is primarily mediated by the firehose in-
stability with non-local energy transfer due to the
growth of small-scale firehose fluctuations that is
comparable to the overall energy flux. The mean
pressure anisotropy is slightly negative, with some
parts of the box below the kinetic-firehose thresh-
old.

• Firehose instability creates small-scale magnetic
fluctuations, which scatter particles. The effective
collisionality in the quasi-steady state is consistent
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with an estimate based on incompressible Bragin-
skii MHD with the pressure anisotropy regulated

by firehose instability, viz., νeff ∼ βb̂b̂ :∇u.

• The effective viscous scale due to the firehose-
induced collisionality is close to the driving scale of
the turbulence. For a cascade with Alfvénic Mach
number MA, our analytical estimates suggest that
the ratio of effective viscous scale and the outer
scale is `ν/L ∼ M−3

A . In our simulations, MA ∼ 1
at the outer scale.

• In addition to small-scale dissipation due to Landau
damping, there is a considerable amount of viscous
heating at the effective viscous scale.

• Ion heating removes the majority of the cascading
energy, ∼80–90% for β = 4 and 16.

• Viscous heating steepens the kinetic-energy spec-
trum of the turbulence. The spectrum is approxi-
mately k−2

⊥ .

• The magnetic-energy spectrum is shallower than

k
−5/3
⊥ near the ion-Larmor scale due to the pres-

ence of firehose fluctuations.

This work provides the first self-consistent estimate of
the effective viscosity in a turbulent collisionless high-β
plasma. It makes observational predictions, which can
be tested in the solar wind [104] and in the intracluster
medium, and raises important complications for models
of radiatively inefficient black-hole accretion flows.
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[99] Another potential explanation could have been scale-
dependence of the effective Alfvén speed. This explana-
tion does not work for our simulations because pressure
anisotropy is mostly concentrated at the outer scale.

[100] Unfortunately, the βi0 = 16 simulation with double-
mode driving did not have tracked particles, and the
βi0 = 16 simulation with single-mode driving did not
have the collisionality diagnostic. Therefore, in this Fig-
ure, we combine diagnostics from these two different
simulations. The simulations have similar distributions
of τcoll.

[101] Given that the distribution of τcoll is non-Poisson,
〈1/τcoll〉 is different from 1/〈τcoll〉. We use the latter as
a definition of the effective collisionality.

[102] All intervals have significant energization at the outer
scale, which is likely due to adiabatic processes such as
the overall growth of the magnetic-field strength in the
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a kinetic simulation of expanding Alfvénic turbulence,
which was also affected by the firehose instability but
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of its lower value of βi0.

[104] An important source of pressure anisotropy in the solar
wind is its expansion and the consequent dilution of the
interplanetary magnetic field [95]. See Ref. [43] for a
recent discussion of how such expansion affects Alfvénic
turbulence in a collisionless, magnetized plasma.

Appendix A: Mirror and AIC instabilities in
βi0 = 16 simulation

In the early stages of our simulations, the external
driving excites large-scale modes, which produce large
coherent patches of positive pressure anisotropy, owing
to the conservation of the particles’ magnetic moments.
Once this pressure anisotropy grows above the ∼1/β
threshold, the mirror instability is triggered. This in-
stability produces “cross-patterned” oblique structures
in δB‖, which act to reduce the magnetic-field strength
locally. Particles trapped in these structures “see” an al-
most constant-in-time magnetic field, which prevents the
pressure anisotropy of the trapped-particle population to
grow beyond the mirror-instability threshold. Eventually
the mirrors become large enough and their edges sharp
enough to scatter particles [23, 46].

We illustrate this process in Figure 17, which shows
snapshots of δB‖ in the planes perpendicular (panel a)
and parallel (panel b) to the background magnetic
field, two-dimensional histograms (panel c) of pressure
anisotropy and plasma β, and structure functions of the
magnetic-field fluctuations (panel d), defined as

Sn(`) ≡ 〈|B(x + `)−B(x)|n〉x, (A1)

where n is the order of the structure function and 〈 · 〉x
represents the spatial average over the simulation do-
main. In addition to the full structure function (A1), we
also compute the structure functions of magnetic-field
fluctuations oriented parallel and perpendicular to the
local, scale-dependent magnetic-field direction. To de-
termine the latter, we define

Bloc(`,x) ≡ [B(x + `) + B(x)]/2, (A2)

and then compute the structure functions of those
fluctuating magnetic-field components parallel and per-

pendicular to b̂loc ≡ Bloc/Bloc [93], e.g., S‖ repre-
sents the structure function computed using B‖(`,x) ≡
[B(x) · b̂loc(`,x)]b̂loc(`,x), and S⊥ represents a structure
function computed using B⊥(`,x) ≡ B(x) − B‖(`,x).
For additional details concerning structure-function anal-
yses of turbulence simulations, we refer the reader to
Ref. [94].

Figure 17 shows a snapshot from the βi0 = 16 sim-
ulation at a relatively early time. One can see several
large-scale modes, which have not yet had time to shear
one another. These large-scale fluctuations produce ap-
preciable positive pressure anisotropy (∆p > 0), with a
considerable fraction of the box being above both the mir-
ror and AIC instability thresholds. We have chosen this
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FIG. 17: (a,b) Snapshots of parallel magnetic-field fluctuations δB‖ (relative to B0) during the early stage of the βi0 = 16
simulation (t ≈ 0.4tcross). Panel (a) shows a slice perpendicular to the guide field; panel (b) shows a slice along the guide field.
There is a clear “cross” pattern in both slices, indicating oblique mirror fluctuations. (c) The distribution function of points in
the box as a function of their β and pressure anisotropy. Dashed lines show the thresholds for mirror [18–20] and fluid-firehose
[14–17] instabilities; dot-dashed line represents a threshold for the AIC instability [21, 69] and kinetic firehose instabilities
[43, 79]. In this snapshot, the majority of the box is above the mirror threshold. The black dot indicates the initial position of
the simulation box. (d) 6th-order structure function of the fluid velocity- and magnetic-field fluctuations. High-order structure
functions are chosen to highlight intense small-scale fluctuations, which for this snapshot are mirror modes: oblique modes
producing kinetic-range peaks in both parallel and perpendicular structure functions of parallel magnetic-field fluctuations of
parallel magnetic field.

particular snapshot because it highlights the mirror insta-
bility being triggered by pressure anisotropy – through-
out the box, one can see oblique fluctuations predomi-
nantly of δB ≈ δB‖. To examine these fluctuations fur-
ther, we plot the sixth-order structure functions of δB⊥
(blue) and δB‖ (red). The high order of these structure
functions is chosen to highlight localized, high-amplitude
structures, such as those expected to be produced by ki-
netic micro-instabilities [23]. This analysis clearly shows
that there is considerable magnetic energy at the driv-
ing scales of the simulation and some energy at the ki-
netic scales (due to instabilities), with very little energy
in between. This is an indication that the energy stored
in the anisotropic distribution function has been trans-

ferred non-locally from the driving scales (which have the
largest pressure anisotropy) to the kinetic scales.

At the scale separations achieved in our simulations,
trapping of particles by mirror fluctuations and the con-
sequent regulation of the pressure anisotropy towards
the mirror thresholds occur relatively slowly. Because of
this, the unstable pressure anisotropy [23, 46, 72] over-
shoots the mirror threshold enough to reach the AIC in-
stability threshold (this is unlikely to occur in real as-
trophysical systems, which have significantly larger scale
separations). Figure 18 shows a simulation snapshot at
t ≈ 0.6tcross, by which time the AIC instability has had
enough time to grow, as indicated by the strong quasi-
parallel fluctuations in δB⊥ (cf. Figure 17). Examination
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FIG. 18: The same as Figure 17, but for a slightly later time t ≈ 0.6tcross, at which quasi-parallel fluctuations are manifest.
The perpendicular component of magnetic field is shown instead of the parallel one. Those fluctuations are produced by the
AIC instability. The structure functions show two predominant modes of fluctuations: oblique fluctuations in δB‖ caused by
mirror instability, and quasi-parallel fluctuations in δB⊥, which are AIC waves.

of the structure functions indicates that this instability
is cleanly separated from the previously triggered mir-
rors: in addition to “bumps” in the structure functions
due to the mirror instability, an extra bump in δB⊥ ap-
pears, with no obvious indication of interactions between
the two instabilities. Finally, the histogram of pressure
anisotropy and β‖ shows that the pressure anisotropy
has decreased from the previous snapshot even though
the fluctuation amplitude at the driving scale has in-
creased, suggesting that the instabilities have already
back-reacted on the plasma and reduced its departures
from isotropy.

Appendix B: Energy transfer in kinetic high-β
turbulence

In this Appendix, we summarize the energy-transfer
analysis that we use to study non-local interaction in

high-β kinetic turbulence. Energy is injected by the ex-
ternal forcing in the form of bulk kinetic energy Ebulk ≡
%u2/2. Part of this energy is then converted into mag-
netic energy Emag ≡ B2/8π through electromagnetic in-
duction. This energy is ultimately dissipated by increas-
ing the thermal energy of ions (Eth ≡ p⊥ + p‖/2) or by
hyper-resistivity at small scales.

The evolution of bulk kinetic energy follows from the
momentum equation for ions (assuming gyrotropy of the
ion distribution function):

∂%u

∂t
=−∇·

[
%uu +

(
p⊥ + nTe +

B2

8π

)
I

−
(
B2

4π
+ ∆p

)
b̂b̂

]
+ F . (B1)

Similarly, the evolution of magnetic energy follows from



29

Faraday’s and Ohm’s laws:

∂B

∂t
= −c∇×E (B2)

=∇×
[
u×B − (∇×B) ×B

4πne/c

+ ηhyper∇2

(
∇×B

4π/c

)]
,

where the last term represents dissipation due to hyper-
resistivity. Equations for the evolution of kinetic and
magnetic energies can be obtain by multiplying equations
(B1) and (B2) by u and B correspondingly. Thermal en-
ergy Eth in the system increases due to viscous dissipation
and compressive heating:

dEth
dt

= −
∫

P :∇ud3x

= −
∫ [

p⊥∇·u− (∆p b̂b̂) :∇u
]

d3x. (B3)

In what follows, it is useful to define the energy “reser-
voirs” corresponding to kinetic, magnetic and thermal
energies, with each reservoir associated with a certain
vector field a, so that Ea ≡ a2/2. For the bulk kinetic
energy, au =

√
%u, so

Ebulk =

∫ (√
%u
)2

2
d3x

=
1

(2π)3

∫
1

2
(
√
%u)k · (

√
%u)
∗
k d3k. (B4)

The definition for magnetic energy is also straightfor-
ward: aB ≡ B/

√
4π, so

Emag =

∫ (
B/
√

4π
)2

2
d3x

=
1

(2π)3

∫
1

8π
(B)k · (B)

∗
k d3k. (B5)

The definition of the energy reservoir associated with
anisotropic thermal energy is less straightforward. In

this article, we use a∆p ≡
√
|∆p|b̂. This definition is

motivated by two facts. First, in the KRMHD limit,
(δa∆p)2/2 matches up to a sign with the corresponding
term in the plasma free energy [44]:

W∆
KRMHD =

∫
β‖i

∆i

2

δB2
⊥

B2
0

d3x. (B6)

Secondly, the thermal energy of the plasma can be writ-
ten as

Eth =

∫
n(2T⊥ + T‖)

2
d3x =

∫ (
3

2
p⊥ −

1

2
∆p

)
d3x

= E iso
th −

∫
ϑ∆p

2

(√
|∆p|b̂

)2

d3x (B7)

= E iso
th −

1

(2π)3

∫
ϑ∆p

2

(√
|∆p|b̂

)
k
·
(√
|∆p|b̂

)∗
k

d3k,

where ϑ∆p ≡ sign(∆p) and E iso
th is the “isotropic thermal

energy” associated with p⊥. The proposed definition of
the anisotropic thermal energy allows us to consider the
“advection-like” terms in (B3) and (B4) associated with
∆p separately from the “compression-like” terms propor-
tional to divergences of various vector fields in the system
and terms proportional to gradients of p⊥ and B2/2.

The rates of exchange of energy between different reser-
voirs follow from equations (B1)–(B3). Let us consider
the individual terms in equation (B1) separately. As we
show later (Figure 19), the most dominant terms are re-
lated to the Reynolds, Maxwell and anisotropic viscous
stresses. The rate of change of kinetic energy due to the
Reynolds stress is

dER
bulk

dt
= −

∫
(
√
%u)
√
%
· {∇· [(

√
%u) (

√
%u)]} d3x

= −
∫

au√
%
· [∇· (auau)] d3x (B8)

= −
∫ {

au ·
[
au√
%
·∇au

]
+

(au)2

√
%
∇·au

}
d3x.

The second term in the integrand of the final expres-
sion is related to compressive motions (∝∇·au). As we
show later (Figure 19), in high-β turbulence, this term is
smaller than the first,“advection-like” term. To explore
the locality of this cascade, we define k-shell averaged
fields

〈a〉K ≡
1

(2π)3

∫

k∈K

ak e−ik ·x d3k. (B9)

We choose cylindrical k⊥-shells with width dk⊥ ∝ k⊥,
so that the shells have equal width in log k⊥. With
such a choice of shells, 〈a〉K is proportional to the fluc-
tuation amplitude δak⊥ (i.e., δa2

k⊥ =
∫
k⊥
|ak|2d3k).

As a result, an energy transfer rate of the form
〈u〉K · [〈u〉K ·∇] 〈u〉K ∼ k⊥δu3

k⊥ ∼ ε approximates the
cascade rate. For a conservative cascade, this energy
transfer rate is the same for each k⊥-shell.

For non-overlapping shells, the shell-averaged vectors
aK satisfy by construction

a =
∑

K

〈a〉K , (B10)

and, therefore,

dER
bulk

dt
=
∑

K

∫
d〈au〉2K

dt
d3x (B11)

≈ −
∑

K

∫
〈au〉K · (u ·∇au) d3x ≡

∑

KPQ

∫
TR
KPQ d3x,

where in the last step we have defined 3-shell correlators
(see, e.g. [80] for details):

TR
KPQ ≡ −〈au〉K · (〈u〉P ·∇) 〈au〉Q. (B12)
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FIG. 19: Non-local energy transfer functions averaged over the quasi-steady state due to the Reynolds stress (left), Maxwell
stress (center) and anisotropic viscous stress (right) in βi0 = 16 simulation. Most of the transfer in the early stages of the
simulation is local, but there is considerable non-local transfer mediated by the Maxwell stress in the quasi-steady state.
Panels (j)–(l) show the remaining transfer terms in the momentum equation as well as terms in the induction equation and
the equation for thermal energy. Note that terms associated with compressions and gradients of isotropic pressures are smaller
than “advection-like” terms.
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These correlators describe the transfer of energy associ-
ated with field au from shell Q to shell K, mediated by
field 〈u〉P , i.e.,

∫
d〈au〉2K

dt

∣∣∣∣
PQ

d3x =

∫
TR
KPQ d3x. (B13)

The energy cannot go from shell P to shells K and Q
or vice versa. This can be easily seen from the sum of
the energies in the shells K and Q during their mutual
interaction mediated by the shell P :

∫
d〈au〉2K

dt

∣∣∣∣
PQ

+
d〈au〉2Q

dt

∣∣∣∣
PK

d3x (B14)

= −
∫

[〈au〉K · (〈u〉P ·∇〈au〉Q)

+ 〈au〉Q · (〈u〉P ·∇〈au〉K)] d3x

= −
∫
〈u〉P ·∇〈au〉K · 〈au〉Q d3x

=

∫
〈au〉K · 〈au〉Q∇· 〈u〉P d3x,

so that the total energy during the interaction can only
come from the compressive motions of the mediator shell,
which are small in high-β turbulence. As we are not inter-
ested in specific mediator shells, we can sum over P and
introduce a shell-to-shell energy transfer function, i.e.,
the energy-transfer function due to the Reynolds stress
[81]:

T R
q⊥→k⊥ ≡ −

∫
〈au〉k⊥ · (u ·∇〈au〉q⊥) d3x. (B15)

Similar transfer functions could be defined for any field
a and any mediator function f :

T a1fa2q⊥→k⊥ ≡
∫
〈a1〉k⊥ · (f ·∇〈a2〉q⊥) d3x. (B16)

Of particular importance to us are the transfer func-
tions rates due to the Reynolds stress (B15), the Maxwell
stress,

T M
q⊥→k⊥ ≡

∫
〈au〉k⊥ ·

(
B√
4π%
·∇〈aB〉q⊥

)
d3x, (B17)

and the anisotropic viscous stress,

T V
q⊥→k⊥ ≡

∫
〈au〉k⊥ ·

(
ϑ∆p

√
|∆p|
%

b̂ ·∇〈a∆p〉q⊥

)
d3x.

(B18)
The mediator field for the Maxwell stress has a form
of local Alfvén speed, and the mediator for the viscous
stress has the form of the sound speed directed along the
local magnetic field, but computed using the pressure
anisotropy ∆p. Both transfer functions have correspond-

ing terms (of opposite signs) in the equations for mag-
netic energy and the anisotropic thermal energy. Namely,

dEmag

dt

∣∣∣∣
MHD

=

∫
1

4π
B · [∇× (u×B)] d3x (B19)

=

∫ [
aB ·

(
aB ·∇u

)
− u ·∇(aB)2/2

− (aB)2∇·u
]

d3x

=
∑

q⊥k⊥

T mhd
q⊥→k⊥ + (compressive terms),

where we only used the “MHD” electric field u×B/c
and

T mhd
q⊥→k⊥ ≡

∫
〈aB〉k⊥ ·

(
B√
4π%
·∇〈au〉q⊥

)
d3x, (B20)

and

dEV
th

dt
=

∫
∆pb̂b̂ :∇ud3x (B21)

=

∫ √
%a∆p ·

(
a∆p ·∇u

)

=
∑

q⊥k⊥

T th
q⊥→k⊥ + (compressive terms),

where

T th
q⊥→k⊥ ≡

∫
〈a∆p〉k⊥ ·

(
ϑ∆p

√
|∆p|
%

b̂ ·∇〈au〉q⊥

)
d3x.

(B22)
To summarize, we write the time derivative of the bulk

kinetic energy as a sum of five terms:

dEbulk

dt
=
∑

q⊥k⊥

[
T R
q⊥→k⊥ + T M

q⊥→k⊥ + T V
q⊥→k⊥ (B23)

+ T C
q⊥→k⊥ + T F

q⊥→k⊥
]
,

where T F
q⊥→k⊥ represents energy injection due to large-

scale external forcing, and T C
q⊥→k⊥ is the sum of all terms

neglected in other transfer functions, which are related
to compressive motions and various pressure forces:

T C
q⊥→k⊥ ≡

∫ {
− 〈au〉k⊥ · 〈au〉q⊥

∇·u
2

(B24)

− 〈au〉k⊥ ·
1√
%
∇〈p⊥ + nTe〉q⊥

− 〈au〉k⊥ ·
[

1

2
√

4π%
∇
(
B · 〈aB〉q⊥

)]

+ 〈au〉k⊥ · 〈a∆p〉q⊥ϑ∆p
∇·

√
|∆p|b̂√
%

}
d3x.

The magnetic energy evolves according to a similar
sum of energy-transfer functions:

dEmag

dt
=
∑

q⊥k⊥

[
T mhd
q⊥→k⊥ + T kin

q⊥→k⊥ + T A
q⊥→k⊥ (B25)

+ T C,B
q⊥→k⊥ + T diss

q⊥→k⊥

]
,
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where

T mhd
q⊥→k⊥ ≡

∫
〈aB〉k⊥ ·

(
B√
4π%
·∇〈au〉q⊥

)
d3x, (B26)

T kin
q⊥→k⊥ ≡

∫
− 〈aB〉k⊥ ·

(
B√
4π%
·∇

〈√
%J

ne

〉

q⊥

)
d3x,

(B27)

T A
q⊥→k⊥ ≡

∫
− 〈aB〉k⊥ ·

[(
u− J

ne

)
·∇〈aB〉q⊥

]
d3x,

(B28)

T C,B
q⊥→k⊥ ≡

∫ {
−〈aB〉k⊥ · 〈aB〉q⊥∇·u (B29)

+ 〈aB〉k⊥ · 〈aB〉q⊥∇·
J

ne

− 1

2
〈aB〉k⊥ ·

(
〈au〉q⊥ −

〈√
%J

ne

〉

q⊥

)
B√
4π%
· ∇%
%

}
d3x,

T diss
q⊥→k⊥ ≡

∫ 〈aB〉k⊥√
4π
·
[
∇×

(
∇2

〈
ηhyperJ

ne

〉

q⊥

)]
d3x.

(B30)

Finally, the thermal energy evolves according to

dEth
dt

=
∑

q⊥k⊥

[
T th
q⊥→k⊥ + T C,th

q⊥→k⊥

]
, (B31)

where

T th
q⊥→k⊥ ≡

∫
〈a∆p〉k⊥ ·

(
ϑ∆p

√
|∆p|
%

b̂ ·∇〈au〉q⊥

)
d3x,

(B32)

T C,th
q⊥→k⊥ ≡

∫ {
−∇· 〈a

u〉k⊥√
%

〈p⊥〉q⊥ (B33)

− 〈a
u〉k⊥ · 〈au〉q⊥

2
∇·u

−1

2
〈a∆p〉k⊥ · 〈au〉q⊥ϑ∆p

√
|∆p|
%

b̂ · ∇%
%

}
d3x.

The transfer functions T R
q⊥→k⊥ ,T M

q⊥→k⊥ and T V
q⊥→k⊥ for

our βi0 = 16 simulation are shown in Figure 19. The en-
ergy transfer due to Reynolds stress is consistent with a
local cascade (see, e.g. [81]): there is a positive energy
flux coming from large scales to small scales (q⊥ < k⊥)
and a similar negative flux from small scales to large
scales (q⊥ > k⊥). The energy transfers due to Maxwell
and viscous stresses are mostly local: there is a posi-
tive energy-transfer rate at q⊥ = k⊥ coming from the
magnetic tension, and a negative transfer mediated by
pressure anisotropy at the same q⊥. However, unlike in a
local MHD cascade, there is a considerable energy trans-
fer at q⊥ > k⊥ mediated by the Maxwell stress. This
corresponds to the transfer of large-scale kinetic energy
to small-scale magnetic energy, as discussed in §III C.

Finally, we note that the largest, “advection-like”
energy-transfer terms correspond to turbulent dynam-
ics and micro-fluctuations produced by instabilities.
These terms, however, do not describe thermalization of
anisotropic thermal energy due to the effective collision-
ality. Studying this thermalization requires considering
the full equation for pressure anisotropy, which involves
higher-order moments of the distribution functions, such
as the heat fluxes. Such an analysis goes beyond the
scope of this paper.
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